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648 Hilbert-space dimensionality in a biphoton frequency
comb: entanglement of formation and Schmidt mode
decomposition
Kai-Chi Chang 1,6✉, Xiang Cheng 1,6✉, Murat Can Sarihan 1, Abhinav Kumar Vinod1, Yoo Seung Lee1, Tian Zhong2,
Yan-Xiao Gong3, Zhenda Xie4✉, Jeffrey H. Shapiro 5, Franco N. C. Wong5 and Chee Wei Wong1✉

Qudit entanglement is an indispensable resource for quantum information processing since increasing dimensionality provides a
pathway to higher capacity and increased noise resilience in quantum communications, and cluster-state quantum computations.
In continuous-variable time–frequency entanglement, encoding multiple qubits per photon is only limited by the frequency
correlation bandwidth and detection timing jitter. Here, we focus on the discrete-variable time–frequency entanglement in a
biphoton frequency comb (BFC), generating by filtering the signal and idler outputs with a fiber Fabry–Pérot cavity with 45.32 GHz
free-spectral range (FSR) and 1.56 GHz full-width-at-half-maximum (FWHM) from a continuous-wave (cw)-pumped type-II
spontaneous parametric downconverter (SPDC). We generate a BFC whose time-binned/frequency-binned Hilbert space
dimensionality is at least 324, based on the assumption of a pure state. Such BFC’s dimensionality doubles up to 648, after
combining with its post-selected polarization entanglement, indicating a potential 6.28 bits/photon classical-information capacity.
The BFC exhibits recurring Hong–Ou–Mandel (HOM) dips over 61 time bins with a maximum visibility of 98.4% without correction
for accidental coincidences. In a post-selected measurement, it violates the Clauser–Horne–Shimony–Holt (CHSH) inequality for
polarization entanglement by up to 18.5 standard deviations with an S-parameter of up to 2.771. It has Franson interference
recurrences in 16 time bins with a maximum visibility of 96.1% without correction for accidental coincidences. From the zeroth- to
the third-order Franson interference, we infer an entanglement of formation (Eof) up to 1.89 ± 0.03 ebits—where 2 ebits is the
maximal entanglement for a 4 × 4 dimensional biphoton—as a lower bound on the 61 time-bin BFC’s high-dimensional
entanglement. To further characterize time-binned/frequency-binned BFCs we obtain Schmidt mode decompositions of BFCs
generated using cavities with 45.32, 15.15, and 5.03 GHz FSRs. These decompositions confirm the time–frequency scaling from
Fourier-transform duality. Moreover, we present the theory of conjugate Franson interferometry—because it is characterized by the
state’s joint-temporal intensity (JTI)—which can further help to distinguish between pure-state BFC and mixed state entangled
frequency pairs, although the experimental implementation is challenging and not yet available. In summary, our BFC serves as a
platform for high-dimensional quantum information processing and high-dimensional quantum key distribution (QKD).
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INTRODUCTION
Qudit entanglement is a fundamental differentiator of quantum
information processing over classical systems in computing,
communications, simulations, and metrology. The dimensionality
and information capacity encoded in entanglement scales with
both the number of physical qudits in multipartite systems and
the dimensionality of each qudit1–11. Entanglement between
multi-dimensional quantum systems (e.g., the mode structure of
two-photon states of light)12–21 can be addressed in spatial-
temporal energy properties such as orbital angular momen-
tum22,23, position-momentum24–29, polarization30,31, energy–
time32–34, and time–frequency35–44, and it has applications that
include d-dimensional cluster-state quantum computation11,38,45

and spectral-shearing interferometry40. In quantum communica-
tions, such as device-independent quantum cryptography, high
dimensionality provides a pathway toward increased information
capacity per photon12,20,34,45–50, improved security against various

attacks51, and better resilience against noise and errors52,53.
Consequently, advances in high-dimensional qudit encoding have
ranged from Bell-type inequalities for energy–time qudits22,35,54,55,
to on-chip quantum frequency-comb generation36,56, to certifying
high-dimensional entanglement via two global product bases
without requiring full state tomography57. The dimensionality of
such qudits include: compressive sensing of joint quantum
systems with 65,536 dimensions in the position-momentum
degrees-of-freedom24; on-chip frequency-bin generation with at
least 100 dimensions36; and 19 time-bin qubits in BFCs35, scaling
remarkably to 84 time-bin revivals with a path length difference of
100m58. Recently, this record has been extended drastically up to
encoding the equivalent of 20 qubits using only biphotons to
create multipartite GHZ states42. To date, however, the Hilbert
space dimensionality of time–frequency entanglement has always
been less than 100 in BFCs generated with fiber cavity filtering of a
continuous-wave (cw)-pumped SPDC source, and the complete
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Schmidt mode decomposition of such time–frequency qudits has
yet to be fully explored.
Here we report a BFC generated by filtering the signal and idler

outputs from a cw-pumped, type-II quasi-phase-matched
(245 GHz FWHM phase-matching bandwidth), frequency-
degenerate SPDC source using a fiber Fabry–Pérot cavity with
45.32 GHz FSR and 1.56 GHz FWHM linewidth. This BFC’s time-
binned/frequency-binned Hilbert space dimensionality is at
least 324, based on the assumption that our BFC is a pure state.
Moreover, when combined with its post-selected polarization
entanglement, the BFC’s dimensionality doubles to at least 648,
implying it has a 6.28 bits/photon classical-information capacity.
We characterized this BFC in a variety of ways. First, we observed
61 periodic revivals of Hong–Ou–Mandel (HOM) interference with
visibility up to 98.4% without correction for accidental coin-
cidences59. Second, we demonstrated this BFC’s spectral correla-
tions across five frequency bins. Next, by switching to a BFC
produced with the same SPDC source and a 5.03 GHz FSR,
0.46 GHz FWHM linewidth cavity, we got spectral correlations
over 19 frequency bins but only seven HOM-interference
recurrences. This result is in keeping with the scaling associated
with Fourier-transform duality, i.e., more time bins imply fewer
frequency bins and vice versa. In additional tests of the 45.32-
GHz-cavity source we first did a post-selected measurement that
violated the Clauser–Horne–Shimony–Holt (CHSH) inequality for
polarization entanglement by up to 18.5 standard deviations with
an S-parameter of up to 2.771. Then we witnessed Franson
interference recurrences in 16 time bins with a maximum visibility
of 96.1% without correction for accidental coincidences. From the
zeroth- to third-order Franson interference, we inferred an
entanglement of formation (Eof) up to 1.89 ± 0.03 ebits—where

two ebits is the maximal entanglement for a 4 × 4 dimensional
biphoton—as a lower bound on the 61 time-bin BFC’s high-
dimensional entanglement. To further characterize time-binned/
frequency-binned BFCs we performed Schmidt mode decom-
positions of BFCs generated using cavities our three (45.32, 15.15,
and 5.03 GHz FSR) cavities. These decompositions confirm the
time–frequency scaling from Fourier-transform duality that was
seen earlier in our spectral correlations and HOM-interference
recurrences. For the 45.32 GHz cavity, the resulting Hilbert space
dimensionality of the time-binned/frequency-binned BFC was at
least 324. Augmented by this state’s post-selected polarization
entanglement, this state’s dimensionality doubles to at least 648,
which represents an ≈ 7.5 × improvement over our prior studies35

and is equivalent to a more than 13 qubit computational space
that can encode 6.28 bits/photon classical-information capacity in
a biphoton-based communication link.
Although standard perturbation theory predicts that our BFC-

generation procedure produces high-purity states, we further
describe the theoretical analysis and modeling from conjugate
Franson interferometry. Characterized by the state’s joint-temporal
intensity (JTI), it can help to directly distinguish between the
desired pure-state BFC and a mixed state of entangled frequency
pairs (which has the same joint spectral intensity), although the
experimental implementation is challenging and not yet available.
In summary, our 13 qubit high-dimensional BFC can serve as a
platform for hybrid time–frequency quantum key distribution
(QKD), time–frequency cluster-state quantum computation, and
high-dimensional encoding in quantum networks.

RESULTS
HOM dip recurrences
Our experimental setup is illustrated in Fig. 1a. The SPDC source
used a type-II quasi-phase-matched, periodically-poled KTiOPO4

(ppKTP) waveguide, integrated in a fiber package for high fluence
and efficiency60. It was pumped by a 658 nm wavelength
Fabry–Pérot laser diode, stabilized by self-injection locking. Our
SPDC entangled photon source was designed to generate
orthogonally-polarized, frequency-degenerate signal-idler photon
pairs at 1316 nm with 245 GHz FWHM phase-matching band-
width61. Three high-dimensional BFCs35 were created by sending
the signal-idler photon pairs through one of three Fabry–Pérot
fiber cavities, whose FSRs are 45.32, 15.15, and 5.03 GHz, with
FWHM linewidths of 1.56, 1.36, and 0.46 GHz, respectively. Each
fiber cavity was mounted on a modified thermoelectric assembly
with ≈ 1mK temperature-control stability. A stabilized tunable
reference laser at 1316 nm was used to align each cavity’s
spectrum to the SPDC’s degenerate frequency. The resulting BFC
biphoton—as predicted by standard perturbation theory with the
signal-idler differential group delay suppressed, see for exam-
ple62—can be expressed as:

ψj i ¼
XN0

m¼�N0

Z
dΩ f 0ðΩÞf Ω�mΔΩð ÞbayH

ωp

2
þ Ω

� �
bayV

ωp

2
� Ω

� �
0j i:

(1)

Here: bayH and bayV are creation operators for horizontally and
vertically polarized photons; ΔΩ is the cavity FSR in rad s–1; Ω is
the detuning of the SPDC’s biphotons from frequency degeneracy;
2N0 þ 1 is the number of cavity lines passed by an overall
bandwidth-limiting filter; f 0 Ωð Þ ¼ sinc AΩð Þ is the SPDC source’s
phase-matching function, where A ¼ 2:78=πBPM with BPM being
the FWHM bandwidth; and f Ω�mΔΩð Þ is the single frequency-
bin profile defined by the cavity’s Lorentzian transmission

Fig. 1 High-dimensional BFC generation and HOM recurrence
observation. a Illustrative experimental configuration. HWP half-
wave plate, FBG fiber Bragg grating, FPC fiber polarization controller,
LPF long-pass filter, PBS polarizing beam splitter, SNSPDs super-
conducting nanowire single-photon detectors, C.C. coincidence
counts. b Coincidence counts versus relative optical delay from
−340 to +340 ps, between the two arms of the HOM interferometer.
HOM-interference recurrences are observed with up to 61 time bins.
Upper left inset: zoom-in of the coincidence counts around zero
relative delay between the two arms of the HOM interferometer. The
dip width was fit to 3.86 ± 0.30 ps, which matches well with the
reciprocal of the 245 GHz phase-matching bandwidth, as predicted
by theory. The central dip visibility is 98.4% before and 99.9% after
subtracting accidental coincidences. Lower right inset: measured
time-bin visibilities versus the HOM optical delay compared with
theory (red solid line, details in Supplementary Discussion I).
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lineshape with FWHM linewidth 2Δω, viz.,

f Ωð Þ ¼ 1

Δωð Þ2þΩ2
h i : (2)

The signal and idler photons were cleanly separated by a
polarizing beam splitter (PBS) in our type-II SPDC configuration,
so that the BFC was generated without post-selection. Using the
temporal wavefunction, the BFC state can be rewritten as:

ψj i ¼
Z

dτe�Δω τj j XN0

m¼�N0

sinc AmΔΩð Þcos mΔΩτð ÞbayH tð ÞbayV t þ τð Þ 0j i;

(3)

where we have used ΔΩ=2π � BPM: The exponential decay in Eq. (3)
is slowly varying relative to the

PN0
m¼�N0

sinc AmΔΩð Þcos mΔΩτð Þ
term because Δω � ΔΩ. Hence, the BFC’s temporal wavefunction
has many peaks, with repetition period equal to the cavity round-
trip time, ΔT ¼ 2π=ΔΩ, where ΔT � 22.1, 66.0, and 198.8 ps for the
BFCs generated by the 45.32, 15.15, and 5.03 GHz cavities,
respectively.
A fiber Bragg grating (FBG) of 346 GHz bandwidth and a long-

pass filter is used to spectrally select the BFC’s 2N0 þ 1 spectral
modes in Eq. (1) and to filter out remaining pump photons. The
BFC wavefunction in Eq. (3) implies that HOM-interference recurs
at relative delays corresponding to integer multiples of the fiber
cavity round-trip time35,63,64, which we experimentally verified as
follows. The orthogonally-polarized entangled photon pairs were
divided by a PBS and directed to two arms of the HOM
interferometer. A fiber polarization controller (FPC) in one arm
of the interferometer alternates the idler photon polarization to
match that of the signal photon at the 50:50 fiber coupler.
A tunable free-space optical delay line with insertion loss smaller
than 0.02 dB over its 220 mm travel range is used to vary the
relative delay between the signal and idler photons for HOM-
interference. After the HOM interferometer, coincidences are
recorded with two superconducting nanowire single-photon
detectors (SNSPDs, ≈ 85% detection efficiency).
The HOM experimental results in Fig. 1b are measured with the

45.32 GHz FSR fiber cavity by scanning the relative optical delay
between the biphotons from −340 to +340 ps with respect to the
central dip. A pump power of 2 mW is chosen to avoid the multi-
pair emissions that decrease two-photon interference visibi-
lity35,65. The fringe visibility of the quantum interference, Vn for
the nth dip is ½Cmax � Cmin nð Þ�=Cmax, where Cmax is the maximum
coincidence count and Cmin nð Þis the nth dip’s minimum coin-
cidence count. Figure 1b left inset zooms in on the central bin
whose visibility is 98.4% before subtracting accidental coin-
cidences, and 99.9% after they are subtracted. Here we note that
the visibility of the central HOM dip must exceed 70.7% to be
quantified as quantum biphoton interference66 and, as the
temporal delay between signal-idler increases from center dip,
the HOM dips’ visibilities decrease according to the fiber cavity’s
Lorentzian profile as described by the theory in Supplementary
Discussion I. Moreover, we note that the variation of the central
HOM dip’s visibility between raw and subtracted data is small
(1.5%), indicating that measurement noise is quite modest at the
central HOM dip (edge dips are getting close to this noise
limitation). The base-to-base width of the central dip—i.e., the
relative optical delay difference between the left and right edges
of the central HOM dip’s triangular shape—is fitted to be 3.86 ±
0.30 ps, which agrees well with the reciprocal of our 245 GHz
phase-matching bandwidth, as predicted by theory. We obtain
HOM-interference recurrences for a total of 61 time bins within
our setup optical delay scanning range, which is a significant
advance over our prior studies35. The measured repetition time of
the recurrences was 11.03 ps, which corresponds to half the
repetition period of the BFC63, and agrees well with our theoretical

modeling in Supplementary Fig. 1. The visibility of the dip
recurrences decreases exponentially (see Fig. 1b right inset) due
to the Lorentzian lineshape of the BFC frequency bins. In
particular, with the 45.32 GHz cavity’s 11.03-ps bin spacing, our
setup’s ≈ 640 ps scan range allows us to observe 61 time bins
given the visibility decay associated with that cavity’s 1.56 GHz
Lorentzian linewidth. A narrower linewidth and broader scan
range would yield even more measurable time bins. Note that in
addition to the HOM-interference recurrences, Franson inter-
ferometer and entanglement of formation is needed to help
certify that we have generated the high-dimensionality BFC, as
predicted by theory67,68.

Frequency-bin correlations
Whereas HOM-interference recurrences arise from the periodic
peaks in the BFC’s time-domain wavefunction from Eq. (3), the
BFC’s frequency-bin correlations arise from the correlation
structure inherent in its frequency-domain wavefunction from
Eq. (1). Inasmuch as those wavefunctions comprise a Fourier-
transform pair, we expect there will be time–frequency duality
between HOM-interference recurrences and frequency-bin corre-
lations, i.e., the more time bins there are the fewer frequency bins
there will be and vice versa. To demonstrate that behavior, we
measure spectral correlations between different signal-idler
frequency-bin pairs. In the experiments presented in Fig. 2, we
use either the 45.32 GHz FSR cavity or the 5.03 GHz FSR cavity.
Each frequency-bin pairs are selected by a pair of tunable
narrowband filters. For the 45.32 GHz cavity measurements in
Fig. 2b, c, the filter has a 300 pm bandwidth; for the 5.03 GHz
cavity results in Fig. 2d, the filter has a 100 pm bandwidth. In
Fig. 2b, c, these frequency-bins range from −2 to +2, with 0
denoting frequency degeneracy. This figure shows that the BFC
exhibits the energy-conservation and frequency correlation, based
on Eq. (1). In addition, we investigate the impact of multi-pair
emissions on the signal-idler frequency bin cross-talk, as shown in
Fig. 2c. At ≈ 4mW pump power, the strongest frequency-bin
cross-talk increased by 5.4 to 6.31 dB compared to the ≈ 2mW
pump power case shown in Fig. 2b.
Figure 2d shows the greater number of BFC frequency bins

obtained using the 5.03 GHz FSR cavity and 100 pm bandwidth
tunable filters. In this measurement, although the temperature
limit of these tunable filters (≈ 100 °C) limited the number of
measurable frequency bins, there are now many more frequency
bins compared to the case in Fig. 2b. We also note that higher
signal-idler frequency-bin cross-talk is observed in the 5.03 GHz
cavity due solely to the 100 pm bandwidth of our filter pairs,
which spans several of that cavity’s FSRs. We have measured and
analyzed the frequency-bin (spectral-correlation) and time-bin
(HOM-interference recurrence) subspaces for the BFCs we
generated with the 5.03, 15.1535, and 45.32 GHz cavities (mea-
sured HOM-interference recurrences for the 5.03 GHz cavity are
shown in Supplementary Fig. 3). Theory tells us that the BFC’s
number of frequency bins NΩ equals 2πBPM=ΔΩ, where
BPM ¼245 GHz is the FWHM phase-matching bandwidth of the
SPDC source, and its number of time bins NT , within an inverse
cavity linewidth, equals π=ΔωΔT . Hence their product satisfies
NTNΩ ¼ πBPM=Δω for all three cavities. For the ideal case, in which
all the frequency bins are measurable, we find that

NT ;45 GHzNΩ;45 GHz � NT ;15 GHzNΩ;15 GHz: (4)

where the subscripts label the cavity FSRs, owing to the nearly
identical linewidths of the two cavities. In contrast, the time-bin
and frequency-bin product for the 5.03 GHz cavity should be
roughly a factor of three higher, owing to its smaller cavity
linewidth. We note that this time-bin and frequency-bin tradeoff
for any of our three cavities supports high-dimensional encoding
for time–frequency QKD.
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Post-selected polarization hyperentanglement measurement
The post-selected BFC state can be described by Eq. (1). Hence,
we probe the polarization entanglement and frequency-
polarization hyperentanglement by using the experimental
setup in Fig. 3a. We couple the 45.32 GHz cavity BFC’s outputs
into low-loss fiber bench setups and performed the polarization
entanglement measurement at the central HOM dip. The
coupling loss for the fiber benches are ≈ 1.3 dB and ≈ 1.5 dB,
respectively. We measured the post-selected polarization entan-
glement by recording the coincidence-count rates while chan-
ging the angle of polarizer P2 when polarizer P1 is set at 45°, 90°,
135°, and 180°. The results are shown in Fig. 3b, where we see
that the measured fringes are well fit by sinusoidal curves,
having accidentals-subtracted mean visibilities of 89.98 ± 0.62%
[calculated using the ðCmax � CminÞ=ðCmax þ CminÞ visibility defini-
tion for sinusoidal fringes]. Here we attribute the non-optimal
polarization visibility to imperfect mode matching and limited
PBS extinction ratio. Subsequently, by setting the optical delay at

0.7 mm, so that the signal and idler photons have a relative delay
of ≈ 4.7 ps which is outside the central HOM dip (width= 3.86 ±
0.30 ps), we measured the polarization entanglement to demon-
strate our BFC’s post-selected frequency-polarization hyperen-
tanglement. As shown in Fig. 3c, the measured fringes have
accidentals-subtracted mean visibilities of 97.96 ± 0.41%. The
fitted results for Fig. 3c are used to obtain the correlation
functions and the corresponding S parameters. The results are
shown in Fig. 3d.
We measure the coincidences at the CHSH polarizer angles for

the polarization subspace, and then calculate the SCHSH parameter,
which is given by69:

SCHSH ¼ E φ1; φ2ð Þ � E φ1; φ
0
2

� �þ E φ0
1; φ2

� �þ Eðφ0
1; φ

0
2Þ

�� ��; (5)

where E φ1; φ2ð Þ is the two-photon correlation function at
measurement angles of φ1 and φ2, respectively. We choose to
optimize SCHSH by using φ1 ¼ π=4, φ0

1 ¼ π=2, φ2 ¼ 5π=8,
φ0
2 ¼ 7π=870. We find SCHSH to be 2.686 ± 0.037 from those

Fig. 2 Quantum frequency correlations of high-dimensional BFCs. a Experimental schematic for the joint spectral intensity measurement
for the high-dimensional quantum state. Signal and idler photons are sent to two tunable narrowband filters for the frequency-bin correlation
measurement with coincidence counting. b Measured frequency correlations of the 45.32 GHz BFC using filters that had matched FWHM
bandwidths of 300 pm and were manually tuned for scans from the −2 to +2 frequency bins from frequency degeneracy. The SPDC source
was pumped at ≈ 2mW for these measurements, which produced relatively high coincidence counts only along the diagonal elements of the
correlation matrix. The cross-talk between frequency bins was less than 11.71 dB. c Measured frequency correlations of the 45.32 GHz BFC
when the SPDC crystal was pumped at ≈ 4mW, showing increased signal-idler frequency-bin cross-talk to 6.31 dB. d Higher-dimensional
frequency-bin joint spectral intensity measurements for the 5.03 GHz BFC. The filters used here had matched FWHM bandwidths of 100 pm
and were temperature tuned for scans from the −9 to +9 frequency bins from frequency degeneracy. The off-diagonal components increase
compared to those in Fig. 2a because the effective bandwidth of the tunable narrowband filters spanned multiple FSRs in this demonstration.
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correlation values, which violates the CHSH inequality by 18.5 stan-
dard deviations. In addition, we estimate the maximum achievable
Sfringe parameter of 2.771 ± 0.016 from the mean visibility of the
entanglement-correlation fringes30. The combination of post-
selected polarization entanglement and HOM-interference is
consistent with Eq. (1)’s implication that our BFC gives post-
selected frequency-polarization hyperentanglement71.

Franson fringe recurrences and entanglement of formation
To further characterize and verify our BFC to support its being
consistent—as predicted by theory—with high-quality
time–frequency entanglement72–76, we establish and stabilized
a Franson interferometry which consists of two unbalanced
Mach–Zehnder interferometers (MZIs), as shown in Fig. 4a. To
achieve long-term stability, the MZIs are enclosed in a multilayer
thermally-insulated enclosure whose temperature is actively
stabilized. In Fig. 4a left inset the long-short path mismatch of
each MZI is measured to be ΔT = 4.84 ns, which satisfies the
requirement of phase-sensitive quantum fourth-order interfer-
ence35. We use a thermal heater in long path of arm1 to fine-
tune the relative phase shift ΔT1 between the two MZIs using our
45.32 GHz BFC. In addition, the motorized stage position ΔT2 is
fixed at the center of optimum Franson interference, with the
maximum constructive interference shown in Fig. 4a left inset. A
zoom-in shows the Franson interference visibility of up to 96.1%
(99.1% after subtracting accidental coincidences) as shown in
Fig. 4a right inset. Figure 4b shows the measured Franson
interference fringes and that the recurrence period for them
equals the fiber cavity round-trip time. The recurrences have a

22.09 ps period, and with fringe visibilities that decay according
to the cavity Lorentzian lineshape as shown in Fig. 4c and in
Supplementary Fig. 5. Moreover, when we move the motorized
stage to a ΔT2 in-between cavity round trips (non-integer) such
as 33 ps, we indeed observe no fringes, as also shown in the inset
of Fig. 4c. We note that we only measured for ΔT2 � 0, limited by
the free-space optical delay line in the long path of arm2, which
can reach up to 360 ps in our measurements.
To give quantitative lower bounds on the time-energy

entanglement of our 45.32 GHz and 15.15 GHz BFCs, we calculate
the entanglements of formation (Eof)

17,42,77 by using these state’s
Franson interference recurrences (zeroth- to the third-order for
the 45.32 GHz and 15.15 GHz BFC). In Fig. 4d, we compute (Eof)
up to 1.89 ± 0.03 ebits for the 45.32 GHz BFC and (Eof) up to
1.40 ± 0.05 ebits for the 15.15 GHz BFC. The theoretical Eof for
visibilities V of 0.98 and 1 are also illustrated in the dashed line
plots with 2 ebits as the maximum entanglement for a 4 × 4
high-dimensional biphoton. The close match between our results
and ideal limits bolsters a nearly nonseparable BFC state
generation. Detailed analysis numbers are also noted in
Supplementary Table III.

Schmidt mode decompositions in the frequency and time
domain
The BFC affords discrete-variable (binned) entanglement in both
the frequency and time domains that can be quantified from our
frequency-binned correlation measurements and our HOM-
interference recurrences by means of Schmidt mode decomposi-
tions78,79 in the two domains. In both cases the relevant quantity

Fig. 3 Polarization hyperentanglement measurements of a high-dimensional 45.32 GHz BFC. a Illustrative experimental scheme in which
the signal and idler photons from a 45.32 GHz BFC were sent to post-selected polarization entanglement measurements. The left inset of Fig.
1a is also included to indicate the frequency-polarization entanglement measurements after central HOM dip. The orange and purple marks
indicate the position where the measurements are performed. P linear polarizer, C.C. coincidence counts. b Characterization of polarization
entanglement at the central HOM dip with polarizer P1 fixed at 45° (black curve), 90° (red curve), 135° (blue curve), and 180° (green curve). In
all cases, we measured the coincidence-counting rates at the two outputs while changing polarizer P2 from 0° to 360°. In all four cases the
measured fringes are well fit with sinusoidal curves, having accidentals-subtracted mean visibilities of 89.98 ± 0.62%. c By setting the relative
delay to 0.7 mm (≈ 4.7 ps) away from the central HOM dip position, we measured the polarization entanglement of our BFC. The measured
fringes have accidentals-subtracted mean visibilities of 97.96 ± 0.41%. d Correlation values needed for the CHSH inequality, performed for
results in panel c. The abscissa label (φ1; φ2) denotes the measured polarization bases. The SCHSH parameter was calculated to be 2.686 ± 0.037
from these correlations, which violates the CHSH inequality by 18.5 standard deviations. We obtained the maximal achievable Sfringe
parameter to be 2.771 ± 0.016 from the mean visibility of the entanglement-correlation fringes. Purple and blue dashed lines denote the
classical and quantum boundaries. Error bars represent statistical errors.
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is the Schmidt number K36, defined as:

K ¼ ð
X

λ2nÞ�1; where
X

λn ¼ 1; (6)

with λnf g being the Schmidt mode eigenvalues.
For the frequency-binned case, the Schmidt eigenvalues are

obtained from the frequency-binned joint spectral amplitude
(JSA),ψ nsΔΩ; nIΔΩð Þ which can be obtained by discretizing
the BFC’s frequency-domain wavefunctionψ ωS;ωIð Þ, where ωS
and ωI are the signal and idler detunings from frequency
degeneracy. For ease of Schmidt-number analysis, we assume
that our BFC is close to a pure state, based on the perturbation
theory characterization of a cw-pumped SPDC and the excellent
stabilization of our fiber Fabry–Pérot cavities. It is challenging,
however, to measure the JSA because such measurements
would require reconstruction of the full phase information of the
entangled state. Instead, the joint spectral intensity (JSI) can be
more readily measured by performing spectrally-resolved
coincidence measurements, as shown in Fig. 2. Therefore, we
will use our JSI data, viz., ψ nsΔΩ; nIΔΩð Þj j2, and assume that the
JSA satisfies

ψ nsΔΩ; nIΔΩð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ nsΔΩ; nIΔΩð Þj j2

q
; (7)

as predicted from perturbation theory with the signal-idler
differential group delay suppressed. Then, by extracting the
Schmidt eigenvalues fλngfrom the JSI measurements (i.e., the
measured frequency-correlation matrix, such as Fig. 2d), the

Schmidt number of the frequency-binned state KΩ, can be
obtained as shown in Fig. 5a. This parameter indicates how
many frequency-binned Schmidt modes are active in the
biphoton state, and therefore describes its effective dimension-
ality36. In particular, extracting the Schmidt eigenvalues fλng
from the five resonance-pairs data of Fig. 2b for the 45.32 GHz
FSR cavity and 2 mW pumping results in a frequency-bin
Schmidt number KΩ,45 GHz ≈ 4.31. For the 45.32 GHz FSR cavity
with 4 mW pump power, the data in Fig. 2c leads to KΩ,45 GHz ≈
3.17, because the increased signal-idler frequency-bin cross-talk
drops the purity of each diagonal frequency mode, resulting in a
smaller Schmidt number. We also note that the increased multi-
pair emissions responsible for this additional cross-talk makes
the output of the BFC less like a biphoton. For our 15.15 GHz FSR
cavity35, we obtain a KΩ,15 GHz ≈ 8.67 frequency-bin Schmidt
number, where the number of frequency-correlated pairs is
limited only by the maximum temperature tuning of our 100 pm
FBG filters. Subsequently we used the frequency-bin data from
Fig. 2d to find the 5.03 GHz cavity’s frequency-bin Schmidt
number. Using the third panel in Fig. 5a, we obtain KΩ,5 GHz ≈
11.67 for that cavity. This imperfect Schmidt number mostly due
to the resolution bounds of our 100 pm bandwidth filters (the
ideal Schmidt number for frequency-binned measurements is
calculated in Supplementary Discussion IV), but it still demon-
strates the scalability of our high-dimensional frequency-binned
BFC. In Fig. 6a we compare the extracted frequency-bin Schmidt
eigenvalues fλng for our three cavities (detailed calculations

Fig. 4 Measured energy–time Franson revival interferometry of the high-dimensional biphoton frequency comb. a Experimental Franson
interference setup. Faraday mirrors (FRMs) compensates the stress-birefringence of the single-mode fiber interferometers. A compact optical
delay line is used in the longer path of arm2 (ΔT2) to provide the tunability in optical delay up to 360 ps. Left inset: temporal two-photon
waveforms (in blue) of Franson interferometry for constructive interferences. Right inset: zoom-in observed phase-sensitive interference fringe
(in red) versus the relative optical delay introduced by the heater in long path of arm1 (ΔT1). The observed Franson visibility is 96.1%, or
99.07% after subtracting the accidental coincidence counts. b, c Witnessed visibility of the Franson revival interference fringes. The
coincidence counts in Franson interference experiments are selected for 0 (time-bin 0), 3, 7, 11, and 15 (time-bin 15) round-trip times of the
45.32 GHz fiber cavity (orange crosses; each round-trip time-bin at 22.09 ps), matching well with theoretical fringe envelope (red solid line; also
further detailed in Supplementary Discussion II). Also included with the green cross in panel c inset is the Franson interference, when
measured away from the integer time bins (such as at ΔT2 = 33 ps), with no observable interference fringes. d Lower bounds for the
entanglement of formation (number of ebits) versus dimension d, in reconstructing the density matrix. Time–frequency entanglement
containing up to 1.89 ± 0.03 ebits for the 45.32 GHz BFC out of the maximum 2 ebits when d= 4. For the 15.15 GHz BFC, the Franson
interference recurrences extract 1.40 ± 0.05 ebits out of the maximum of 2 ebits (also detailed in Supplementary Discussion III).
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of the Schmidt eigenvalues fλng and the resulting Schmidt
numbers are in Supplementary Discussion IV).
Note that we obtain different frequency-binned BFC Schmidt

numbers from the same SPDC phase-matching bandwidth by
using cavities with different FSRs. From our measurements, the
diagonal elements of the spectral-correlation matrix (Fig. 2d) show
the decreasing-envelope behavior of the BFC. Hence, with the
Schmidt decomposition, we have observed BFC states with
Hilbert-space dimensionalities, KΩ × KΩ, having lower bounds of
least 16 for the 45.32 GHz cavity, 64 for the 15.15 GHz cavity, and
121 for the 5.03 GHz cavity. Furthermore, the ideal full Hilbert-
space dimensionalities are estimated to be at least 24 (= 4.9 × 4.9)
for the 45.32 GHz cavity, 400 (= 20 × 20) for the 15.15 GHz cavity,
and 1156 (= 34 × 34) for the 5.03 GHz cavity, where the numbers
arise from the detailed theory for the frequency-binned BFC’s
Schmidt number in Supplementary Discussion IV.
Turning now to the Schmidt number for the time-binned BFC,

to proceed in a manner analogous to what we used for the
frequency-binned BFC would require knowledge of the binned JTI.
However, because our BFC is generated with cw pumping, this
binned JTI—under the assumption of a pure-state biphoton—is a
diagonal matrix with elements ψðnΔTÞj j2, where ψ τð Þ is the BFC’s
time-domain wavefunction from Eq. (3) and nΔT is the relative
delay between the signal and idler photons’ nth time bin. We can
estimate that binned JTI from our HOM-interference data, as we

now explain. By sampling ψ τð Þ at τ ¼ nΔT , we get

ψðnΔTÞj j2¼ expð�2 nj jΔωΔTÞPN0
n¼�N0

expð�2 nj jΔωΔTÞ ; (8)

for the JTI. From Supplementary Discussion I, we have that the
visibility of the nth HOM dip is:

Vn ¼ exp � nj jΔωΔTð Þ 1þ nj jΔωΔTð Þ; (9)

thus making it possible to find the BFC’s JTI by inverting the one-
to-one relation between nj jΔωΔT and Vn. Measuring the binned
joint-temporal amplitude (JTA), whose singular-value decomposi-
tion is the Schmidt decomposition, is prohibitively difficult. Hence,
we assume, as predicted by Eq. (3), that it equals the square-root
of the binned JTI, i.e., we use

ψ nΔTð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψðnΔTÞj j2

q
; (10)

for the time-binned wavefunction of the BFC, viz., its JTA, from
which it follows that the time-bin Schmidt mode eigenvalues,
fλng, are given by:

λn ¼ e�2πjnj=F
PN

n¼�N e
�2πjnj=F ¼

sinh π=Fð Þ exp �2πjnj=Fð Þ
cosh π=Fð Þ � exp �ð2N þ 1Þπ=Fð Þ ; for 0 � jnj � N;

(11)

where F ¼ ΔΩ=2Δω is the cavity finesse. The time-binned BFC

Fig. 5 Schmidt mode decompositions for three high-dimensional BFCs. a The Schmidt mode eigenvalues for measured frequency-binned
states obtained using our 45.32, 15.15, and 5.03 GHz FSR cavities with ≈ 2mW pump power (calculation detailed in Supplementary Discussion
IV). The obtained frequency-bin Schmidt numbers are KΩ,45 GHz ≈ 4.31, KΩ,15 GHz ≈ 8.67, and KΩ,5 GHz ≈ 11.67 for the three cavities. b The Schmidt
mode eigenvalues versus different time bins from HOM interferometry and the corresponding visibilities of the HOM-interference
recurrences. The blue, green, and red bars indicate the time-binned Schmidt eigenvalues for the 45.32, 15.15, and 5.03 GHz cavities,
respectively, and the black points indicate the visibilities from HOM interferometry. The central HOM dip is labeled as 0 as a reference.
The dominant Schmidt mode eigenvalues for each high-dimensional BFC have been highlighted within the orange-dashed boxes and
detailed in Supplementary Discussion IV. The obtained time-bin Schmidt numbers are KT,5 GHz ≈ 5.16, KT,15 GHz ≈ 6.71, and KT,45 GHz ≈ 18.30 for
the three cavities.
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state’s Schmidt number is then found from Eq. (6), which leads to
the following theoretical results based on our three cavities’
finesses: KT,5 GHz ≈ 5.16, KT,15 GHz ≈ 6.71, and KT,45 GHz ≈ 18.30. By
performing a parametric ( nj jΔωΔT ) fit of our experimental data to
the Vn expression in Eq. (9), and then applying the result in
Eqs. (11) and (6), we obtain the experimental values KT,5 GHz ≈ 5.11,
KT,15 GHz ≈ 6.56, and KT,45 GHz ≈ 18.02, which agree well with theory.
All the extracted time-binned Schmidt eigenvalues are shown
in Fig. 5b.
For the 45.32 GHz cavity’s BFC, the HOM-interference recur-

rences’ lower bound on the Hilbert space dimensionality is
therefore KT,45 GHz × KT,45 GHz= 324. Augmenting the time bins
with the BFC’s post-selected polarization entanglement doubles
this dimensionality to at least 648. Furthermore, we find that the
product of the time-binned and frequency-binned Schmidt
numbers (when all the frequency bins are measurable, and the
measurable HOM time bins run from −340 to 340 ps relative
delay) is similar for the 45.32 GHz and 15.15 GHz BFCs:

KT ;45 GHzKΩ;45 GHz ffi KT ;15 GHzKΩ;15 GHz; (12)

which mimics the BFC time–frequency product relation from
Eq. (4).
Our Schmidt mode analysis demonstrates the effective

time–frequency scaling (increase/decrease in number of bins) by
using our BFCs. For the three fiber cavities that we measured, we
have successfully scaled the time-binned Schmidt numbers from
KT,5 GHz ≈ 5.11 to KT,45 GHz ≈ 18.02, limited by the finesses of the
fiber cavities. In the frequency-binned subspace we scaled from
KΩ,45 GHz ≈ 4.31 to KΩ,5 GHz ≈ 11.67, limited by the temperature
tunability of the FBG filter. The scaling of time–frequency

dimensionality is complementary, the higher the Schmidt number
in time or frequency, the smaller the Schmidt number in its
conjugate domain. Multiplying the highest estimated time-binned
Schmidt number by its frequency-binned Schmidt number
counterpart yields a total Schmidt number of 77.67, which could
encode over 12 qubits (KTKΩ × KTKΩ > 212), with potentially 6.28
bits/photon [from log2(KTKΩ)= 6.28)] classical-information capa-
city that can be used in high-dimensional QKD.

Pure-state versus mixed state for filtered SPDC outputs
To this point we have asserted that our filtering of the signal and
idler outputs from a cw-pumped SPDC source generates a nearly
nonseparable-state BFC. Toward that end we have reported
experimental results consistent with that interpretation: HOM-
interference recurrences, frequency-bin correlations, Franson
interference recurrences and their inferred entanglements of
formation, and Schmidt mode decompositions in the time-bin
and frequency-bin subspaces. Our BFC frequency-domain
wavefunction’s being an even function of detuning implies that
its JSI determines its HOM-interference behavior68, and in
general the BFC’s JSI determines its frequency-binned correla-
tions and its Franson interference behavior (see Supplementary
Discussion I, II, and V for details). That said, standard perturbation
theory, see, e.g.,62, predicts that a cw-pumped SPDC will emit
pure-state (or nearly pure-state) biphotons, and the excellent
stabilization of our fiber Fabry–Pérot cavities then implies that
our filtered SPDC sources should then emit nearly nonseparable-
state BFC biphotons. Our prior experimental work supports the
nearly pure-state assertion for a SPDC source’s output, see80, in
which both the JSI and JTI were measured for a pulse-pumped

Fig. 6 Conjugate Franson interferometry and theoretical visibilities of conjugate Franson interference recurrences for the 45.32 GHz BFC
and the EFS with the same JSI. a The proposed experimental setup for conjugate Franson interferometry. The signal and idler outputs from a
filtered SPDC source are applied to a pair of MZIs. One arm of each MZI contains an OFS, i.e., a single-sideband modulator, that imposes
frequency shifts þωm and �ωm on the signal and idler, respectively. The MZI’s outputs undergo positive (for the signal) and negative (for the
idler) dispersions of equal magnitude that, together with the frequency shifts, ensure there is no second-order interference present in the
signal-idler coincidence counts. b BFC theoretical conjugate Franson interference has high-visibility recurrences and they occur only when
the interferometer frequency offset is kΔΩ for integer k. c EFS theoretical conjugate Franson interference has low-visibility recurrences and
they only occur when the interferometer frequency offset is 2kΔΩ for integer k. Supplementary Discussion V describes the details of conjugate
Franson interferometry, comparing the BFC and EFS recurrence visibilities for the 15.15 GHz and 5.03 GHz cavities.

K.-C. Chang et al.

8

npj Quantum Information (2021)    48 Published in partnership with The University of New South Wales



source, and81, in which an SPDC source was entanglement
engineered to produce single spatiotemporal-mode heralded
single-photon pulses. Moreover, we also note that there have
been several experimental demonstrations of high-dimensional
frequency-bin entanglement utilizing the sinusoidally driven
phase modulator in recent years82–85. Nevertheless, direct
experimental evidence of a BFC state purity is highly desirable.
Conjugate Franson interferometry33, since it is characterized by
the signal-idler state’s JTI, can provide such evidence. The
configuration for conjugate Franson interferometry is shown in
Fig. 6a. Compared to our Franson interferometry setup in Fig. 4a,
a pair of optical frequency shifters (OFSs) and dispersion
modules are required to implement the conjugate Franson
interferometry. In particular, this configuration easily allows the
desired BFC pure state to be distinguished from mixed states
with the same JSI. For example, Fig. 6b, c compare the visibilities
for conjugate Franson interference recurrences of our 45.32 GHz
BFC to those of the entangled frequency-pair state (EFS)—i.e., an
incoherent mixture of the pure states,

ψ
mð Þ
EFS

���
E
¼

Z
dΩ f 0ðΩÞ½f ΩþmΔΩð Þ þ f Ω�mΔΩð Þ� bayH

ωp

2
þ Ω

� �
bayV

ωp

2
� Ω

� �
0j i;

(13)

for �N0 � m � N0—that has the same JSI (see Supplementary
Discussion V for more details). The experimental implementation
and stabilization of a conjugate Franson interferometer, challen-
ging currently, can provide a pathway for future exploration of the
high-dimensional BFC.

DISCUSSION
In this work we have demonstrated high-dimensionality
time–frequency subspaces using a BFC generated by filtering
the signal and idler outputs from a cw-pumped SPDC source. For
a BFC generated with a 45.32 GHz FSR filter cavity we achieved
61 HOM-interference recurrences, with a maximum visibility
of 98.4% (99.9%) before (after) accidental coincidences are
subtracted. For a BFC generated with a 5.03 GHz FSR filter cavity,
we observed high spectral correlations over 19 frequency bins.
All told, for the three cavities we employed, we explored spectral
and temporal correlations—and hence their Fourier-transform
duality—over cavity FSRs spanning nearly an order of magni-
tude. We then measured up to 16 Franson interference
recurrences, observing a maximum visibility of 96.0% (99.1%)
before (after) accidental coincidences are subtracted. Using the
zeroth to the third recurrence visibilities allowed us to obtain an
Eof ≥1.89 ± 0.03 ebits— where 2 is the maximum for a 4 × 4
dimensional biphoton–lower bound on our BFC’s entanglement.
Via Schmidt mode decompositions, we quantified the entangle-
ment scaling of our BFCs’ time-binned and frequency-binned
subspaces, comparing measured values with their theoretical
counterparts. For example, our 45.32 GHz cavity’s post-selected
frequency-polarization hyperentangled BFC achieves a time-
binned Schmidt number of 18 and a Hilbert-space dimension-
ality of at least 648, based on the assumption of a pure state,
representing an advance of almost an order of magnitude
compared to our previous work. With the time–frequency
duality and the frequency-polarization hyperentanglement of
such a BFC, we infer a computational space of more than 12
qubits, with 6.28 bits/photon that can potentially be encoded for
classical-information transmission over a quantum channel
using only biphotons. This high-dimensionality time–frequency
state encodes multiple qubits from different degrees-of-freedom
onto the biphoton pair, and thus further increasing the photon
information capacity with applications in high-dimensional
quantum information processing, time–frequency cluster-state
quantum computation, and high-dimensional QKD.

METHODS
Experimental setups
For our cw-pumped source, we customized a tunable stabilized self-
injection-locked 658 nm laser. We used a precision laser controller from
Vescent Photonics (D2-105) to drive the laser diode. For other parts of
experimental setups, we used the following components with all optical
parts connected using either single-mode optical fibers or polarization-
maintaining fibers: fiber-pigtailed ppKTP waveguide (AdvR), Fabry–Pérot
fiber cavities (Luna/Micron Optics), bandpass filters (O/E Land and
Agiltron), single-photon detectors (Photon Spot), and timing electronics
(PicoQuant and Swabian Instruments).

Franson interferometry
For the phase-sensitive time-energy quantum interference measurements,
we need to stabilize Franson interferometry to prevent the mechanical,
acoustic, and thermal noises from the environment. Both MZI arms are
shielded in double layers of sealed boxes, and temperature-stabilized with
four home-made Peltier modules. The Franson interferometer free-space
optical delay line (arm2, labeled in Fig. 4a) is based on a miniaturized linear
stage with closed-loop piezoelectric motor control (CONEX-AG-LS25-27P,
Newport). The optical insertion loss of double-pass free-space delay line is
smaller than 0.4 ± 0.05 dB over the entire 360 ps delay-travel range, providing
us the capability to measure Franson revival time bins from multiple cavities
round-trip times of our BFC. For sub-femtosecond interference measure-
ments, we utilize a temperature controller to thermally adjust the relative
phase between the two arms of our Franson interferometer.

DATA AVAILABILITY
The data and analysis codes used in this study are available from the corresponding
authors on request.
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