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In this Supplemental Information, we provide detailed theoretical calculations behind the
experimental results presented in the main text, as well as additional information about the
experimental implementations. In Sections I and II, respectively, we present the theories of Hong-
Ou-Mandel (HOM) and Franson interferometry and use them to quantify their interference
recurrences when they are illuminated by a biphoton frequency comb (BFC) [S1-S11]. These
sections also include some experimental results, viz., HOM interference recurrences produced by
the 5.03 GHz free-spectral range (FSR) cavity BFC, and Franson interference fringe patterns at
seven different recurrences obtained using the 45.32 GHz BFC. In Section III, we use the Franson
interference recurrences from the main text’s Figure 4 to calculate lower bounds on the
entanglements of formation (Eof) for the BFCs created using our 45.32 GHz and 15.15 GHz cavities
[S12- S14]. In Section IV, we extract the frequency-binned and time-binned Schmidt eigenvalues

and Schmidt numbers [S15, S16] from the main text’s frequency-bin correlations and HOM-
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interference recurrences. Finally, in Section V, we exhibit a mixed state of entangled frequency
pairs that has a symmetric joint-spectral amplitude (JSA) and the same joint-spectral intensity (JSI)
as our BFC. We then use the theory of conjugate-Franson interferometry [S17] to show that its
interference recurrences distinguish that mixed state from our BFC and thus can provide a

definitive demonstration of BFC generation.

Supplementary Discussion I
First, we discuss the theory of Hong-Ou-Mandel interference produced by biphoton frequency
combs. HOM interference quantifies the distinguishability of a pair of photons [S18]. Previous
experiments [S19- S21], as well as this paper’s main text, have observed HOM-interference
recurrences from a cavity-filtered, continuous-wave (cw) pumped, spontaneous parametric
downconverter (SPDC) source. As explained in the main text, theory predicts that this process will
produce a BFC. Here we will present the theory of the HOM interference recurrences that result
from such BFC illumination.
Quantum interference occurs in our HOM interferometer’s 50:50 fiber coupler. For an ideal

50:50 fiber coupler, the field operators at detectors D1 and D2 are

Bi(0) = 5 [Bs(®) + Bt + T, B(0) = 5 [Bs(0) = By (¢ + 6T)], €Y
where the signal (S) and idler (/) field operators entering the coupler are given by
~ 1 A —i
Ex(t) = 7= [ dw dx(w)e™*", (2)

and 8T is the HOM interferometer’s relative arrival-time delay. We can write the biphoton
coincidence rate as
Ry, o [d1G2 (¢t + 1), (3)

where the second-order correlation function is given by

63t t +7) = [0 (OB, (e + D) @)
with | ) being the BFC state. For the following calculations, we assume ideal cw pumping. Then,
substituting Eqs. (1) and (2) into Eq. (4), we obtain

¢ (t,t + 1) o« [Y( + 6T) — Y(—7 + 6T)|? (5)
where W(t) = [ ®(Q) e*¥*dQ is the BFC state’s (unnormalized) joint-temporal amplitude (JTA),
and ®(Q) is its (unnormalized) joint-spectral amplitude (JSA). By evaluating Eq. (3), we obtain

the coincidence rate
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Re[[ @*(-Q)@(Q)e? 8T qq] 6
[lo(@)|2dQ ' (6)

For our BFC source, () has the following form
P(Q) = X [ (QR(Q) f (2 — mAQ), (7)

where f'(Q) = sinc(AQ) is the phase-matching function, with full-width-at-half-maximum
(FWHM) bandwidth Bpy, = 2.78/2mA . Fiber Bragg grating’s rectangular filter function is
h(Q) = rect()/B), with B being its bandwidth. To compare theory with the main text’s Figure
1b, i.e., its 45.32 GHz cavity HOM interference recurrences, we use the following parameter values:
A =181ps, B/21t =346 GHz, AQ /21 = 45.32 GHz, and Aw/m = 1.563 GHz. In what follows,
we will neglect the frequency-bin overlaps in ®(Q), because AQ >» Aw, and so we obtain the

following result for the BFC’s (unnormalized) joint-spectral intensity (JSI),

No

, sinc?(AQ)
[PDI" = Z [(Aw)? + (Q — mAQ)2]?’ (®)

m=-N,

where N, = [B/2A()] is the integer part of B/2AQ. Furthermore, because B > Bpy > Aw, we
can reduce Eq. (8) to

Ny
B = Z sinc?(AmAQ) 9
- . [(Aw)? + (O — mAQ)2]2’ ©)
From this result we then find that
[1D(Q)|2d0 = Z(A’; s Sy, SInc2(AmAQ) (10)

and

f O*(—Q)D(Q) 2T qQ

_ me”28l0TI(1 + 2Aw|6T)
B 2(Aw)3

Ny

Z sinc?(AmAQ) cos(2mAQST)|. (11)
m=—N,
Combining Eqs. (11) and (6), we get our final theoretical result for the BFC HOM interference
recurrences,
e~ 2AwI8TI (1 42Aw|8T|)

Z:I(J:—NO sinc2(AmAQ)

m

[Zn _, sinc?(AmAQ) cos(2mAQST)). (12)

The normalized theoretical coincidence rate for the BFC generated using our 45.32 GHz cavity

is plotted for -340 ps < 6T <340 ps in Supplementary Figure 1. Here we see interference
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recurrences with an ~11.02 ps period, which matches well with the 11.03 ps period found in our
measurements. The linewidth of each HOM-interference recurrence and its visibility fall-off for

time bins farther away from zero relative delay also match with our measurements.
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Supplementary Figure 1 | Modeling of the HOM-interference recurrences for the 45.32 GHz
BFC. The normalized theoretical coincidence rate as a function of relative optical delay between
the signal and idler photons. There are 61 interference recurrences for the whole optical-delay
scanning range. The visibility decay away from zero relative delay arises from the Lorentzian
lineshape of cw-pumped SPDC photons filtered by a fiber cavity.

We also calculated the HOM-interference recurrences for the 5.03 GHz fiber cavity BFC using
the following parameter values: A = 1.81 ps, B/2n = 346 GHz, AQ /2nm = 5.03 GHz, and
Aw/m = 0.457 GHz. The result, plotted in Supplementary Figure 2, is consistent with the
experimental data shown in Supplementary Figure 3. We see that there are fewer interference
fringes compared to those in Supplementary Figure 1, which is a consequence of the 5.03 GHz
cavity’s smaller FSR, and the = 99.6 ps recurrence period matches well with the 99.4 ps period

seen in our measurements.
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Supplementary Figure 2 | Modeling of the HOM-interference recurrences for the 5.03 GHz
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BFC. The normalized theoretical coincidence rate as a function of relative optical delay. There are
7 interference recurrences for the whole optical-delay scanning range in Supplementary Figure 2,

which agrees well with the experimental results shown in Supplementary Figure 3.
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Supplementary Figure 3 | Experimental HOM-interference recurrences for the 5.03 GHz
BFC. Coincidence counts versus relative optical delay between the two arms of the HOM
interferometer. A total of 7 HOM-interference recurrences are observed.

The visibilities of the HOM-interference recurrences drop less rapidly in Supplementary Figure
2 compared to what is seen in Supplementary Figure 1 — despite 5.03 GHz cavity’s lower finesse
of =& 10 — because of the limited scan range of the relative optical delay for observing the

recurrence visibilities’ fall-off.

Supplementary Discussion 11

Following the discussion of HOM interference of biphoton frequency combs, here, we present
the theory of Franson interference of such high-dimensional source. In Franson interferometry’s
two unbalanced Mach-Zehnder interferometers (MZIs), the field operators at their respective

detectors, D1 and D2, are

() = 5B + Bs(t = ATD], B2 (0 = Z[E(0) - B - ATY)],  (13)
where the signal (S) and idler (/) field operators entering the Franson interferometer, £y (t) for
K = S,1, are given by

Ec(®) = % [ dw ag(w)e i, (14)
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Here, AT; and AT, —the delay differences between each MZI’s long and short paths — are sufficient
to ensure that there is no long-short second-order interference. We can write the biphoton
coincidence rate as

Ry, o« [d1G 2 (¢t + 1), (15)

where

N A 2

G5 (6.t + 1) = [OIE (OB + D), (16)
with | ) being the BFC state. For the following calculations, we assume ideal cw pumping. Then,
substituting Eqs. (13) and (14) into Eq. (16) and suppressing the terms representing long-short path

interference, we get

—iwp (AT +AT3) |2

A t+1) =¥ +¥(r—6Te z |, (17)

where, as before, W(t) = [ ®(Q) e**dQ is the BFC’s JTA, ®(Q) is its JSA, and

5T = ATl - ATz, (18)
By evaluating Eq. (15), we obtain the coincidence rate
Riz & 1+ [ (6T)| cos(“2 + wpAT, + ). (19)
where I'(6T) = [|®(Q)|2eX%T / [|d(Q)|2dQ, and
r'(8T) = | (8T)|e™. (20)

For our BFC source, ®(Q) is given by Eq. (11), thus we obtain

flq)(ﬂ)lzeiQSTdQ

_ me 2PTI(1 + Aw|8T])
B 2(Aw)3

No
lZ Z sinc2(AmAQ)cos(mAQST) + 1]. (21)
m=1

Combining Egs. (19) and (21), we get our final theoretical result for the BFC’s Franson

interference recurrences,

N,
e~20ITI(1 4 200 |5T |

Ry x1+—5 2 Z sinc?(AmAQ)cos(mAQST) + 1
»oo sinc2(AmAQ)

m=—N0

m=1

6T
X cos [a)p (7 + AT2>]. (22)
We can model our experimental results with the theoretical parameters above and the experiment’s

AT, = 4.84 ns. The Franson interference visibility for the BFC generated using our 45.32 GHz

S-6



cavity is plotted for -340 ps < §T < 340 ps in Supplementary Figure 4. Here we see an interference-
recurrence pattern with an = 22.1 ps period, which matches well with the 22.09 ps period found
in our measurements in both main text and supplemental information. The width of each Franson
recurrence and the fall-off in visibility for time bins increasingly far from zero delay also match

with the experimental observations.
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Supplementary Figure 4 | Modeling of the Franson interference recurrences for the 45.32
GHz BFC. Theoretical fringe envelope of Franson interference for the BFC generated using the
45.32 GHz fiber cavity. There are 31 recurrences for the whole optical-delay scanning range in
which we have measured 16 time-bins, limited by our optical delay tuning range. The fall-off in
the coincidence rate away from zero delay arises from the Lorentzian lineshape of the SPDC-
generated photons after they have passed through the fiber cavity.

In Supplementary Figure 5 we present Franson interference fringes at relative delays AT, equal

t0o 0,3,5,7,9, 11, 13, and 15 cavity round-trip times for the 45.32 GHz BFC.
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Supplementary Figure 5 | Franson interference fringes for the 45.32 GHz BFC. a, and b,
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Measured Franson interference fringes as a function of AT;, when AT, issetto 0,3,5,7,9, 11, 13,
and 15 cavity round-trip times. The fringe visibilities obtained from these data are compared to

theory in Supplementary Table 1 and shown in the main text Figure 4d.

Supplementary Table 1 | Franson visibilities of the 45.32 GHz BFC for different optical

delays.

Cavity round-trip | Visibility V,, | Visibility V,,,

time (theoretical) | (experimental)
0 100.0% 99.1%
3 95.9% 94.4%
5 90.2% 88.3%
7 83.2% 80.1%
9 75.6% 73.1%
11 68.0% 65.0%
13 60.5% 56.7%
15 53.4% 48.7%

Supplementary Discussion 111

Standard perturbation theory [S22] predicts that a cw-pumped SPDC source produces pure-
state (or nearly pure-state) biphotons and stabilized-cavity filtering of those biphotons will then
yield nonseparable-state BFCs. Proceeding under that assumption — which, as explained in the
main text, is supported by earlier pulse-pumped SPDC experiments by our team [S23, S24] — we
can quantify, albeit conservatively, the entanglement of our BFCs from lower bounds on their

entanglements of formation, i.e., their Eoss. In particular, following Refs. [12-14], we have that

Bé
Eofz—logz( —7). (23)
for a time-binned BFC, where
oo
Be=——=| > WGijlolk )l = VG kIl ek ol ) | 29
ICl Uk ec
<k

with p being the time-binned state’s density matrix, and |j, k) being the biphoton ket for the jth
signal time bin and the kth idler time bin. Here, C is the set of time-bin indices used in the sum,
with |C| being that set’s cardinality. This lower bound is useful even when we have access only to

a submatrix of the density matrix. For a d X d submatrix, a maximally-entangled state has B, =
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J2(d — 1)/d, leading to E, s = log,(d) ebits. In our experimental setup, shown in the main text’s

Figure 4a, there were technical limitations that prevented our measuring all the elements of the
BFC’s full density matrix. These limitations were due to: (1) our Franson interferometer’s only
having a free-space motorized optical-delay line in its arm 2; and (2) that stage’s 360 ps travel
range being aligned with the 0th time-bin close to the stage’s starting position. Thus, we measured
only one side of the Franson interference revival time-bins.

To instantiate the bound from Eq. (23), we used the visibilities of our BFC’s Franson
interference recurrences for the (j, k|p|j, k) values. Supplementary Table 2 shows the resulting
3 X 3 submatrix elements for 45.32 GHz cavity’s Franson interference. Here, the blue entries are
measurements, the green entries follow from presuming our BFC has time-bin symmetry — as seen,
e.g., in that BFC’s HOM-interference recurrences — and the black entries are obtained by

extrapolating the visibilities using the cavity’s Lorentzian lineshape.

Supplementary Table 2 | Franson interference 3 X 3 submatrix elements for obtaining a
lower bound on the entanglement of formation for the 45.32 GHz BFC.

Visibility | 0" time-bin | 1%t time-bin | 2" time-bin
0™ time-bin | 99 19, 98.3% 96.9%
1 time-bin | 9839, 99.1% 95.1%
2" time-bin | 96 99, 95.1% 99.1%

Supplementary Table 3 shows the 45.32 GHz and 15.15 GHz cavities’ E,r lower bounds for
d = 2 to 4. They were obtained, using the procedure described for Supplementary Table 2, from
the measured Franson interference visibilities in the main text’s Figure 4d. Note that we chose not
to go to higher d values here because increasing d makes the bounds increasingly dependent on
submatrix elements derived from extrapolation rather than from direct measurements. Within that
limited d range, our highest entanglements-of-formation lower bounds are Eof >1.89+0.03
ebits for the 45.32 GHz cavity’s BFC and Eor = 1.40 £ 0.05 ebits for the 15.15 GHz cavity’s BFC.
Both were attained at d = 4, where 2 ebits corresponds to a maximally-entangled pure state of that

dimensionality.
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Supplementary Table 3 | Entanglements of formation lower bounds for the 45.32 GHz and

the 15.15 GHz BFCs.

Dimension d | Maximum ebits for 45.32 | ebits for 15.15
entangled ebits | GHz BFC GHz BFC
2 1 0.98 0.93
1.58 1.54 1.30
4 2 1.89 1.40

Supplementary Discussion IV

In this section, we discuss the Schmidt eigenvalues and Schmidt numbers for frequency-binned
and time-binned BFC states: experimental results versus theory. Supplementary Table 4 presents
the Schmidt eigenvalues inferred from the frequency-bin correlation measurements shown in
Figures 2b and 2¢ of the main text. They were obtained from performing a Schmidt decomposition

on the frequency-correlation matrix [S25-5S30]. In particular, with R;; denoting the coincidence

count for the signal’s ith frequency bin and the idler’s jth frequency bin, we diagonalized the

/2 The Schmidt eigenvalues of the frequency-binned BFC

matrix Jo, whose /jth element is R;;
state are the eigenvalues found from that diagonalization, and the Schmidt number they imply
follows from Eq. (6) of the main text. For the following Supplementary Tables, we highlight and
consider the dominant Schmidt modes that comprise over 60% of the total Schmidt eigenvalues
for each measurement we have performed in the main text’s Figure 2 (for the 45.32 GHz and 5.02

GHz cavities’ BFCs) and Figure 2 of Ref. [S20] (for the 15.15 GHz cavity’s BFC).

Supplementary Table 4 | Measured frequency-bin Schmidt eigenvalues and Schmidt
numbers for the 45.32 GHz BFCs with pump powers ~ 2 mW (left) and ~ 4 mW (right). The

dominant Schmidt eigenvalues are shown in boldface.

Number of Schmidt eigenvalues | Schmidt number || Number of Schmidt eigenvalues | Schmidt number
frequency bins frequency bins

2 0.140 2 0.112

1 0.218 | 0.165

4310 3.17

0 0.343 0 0.499

-1 0.183 -1 0.130

-2 0.115 -2 0.091

The results of performing the same frequency-bin Schmidt decomposition on the data we
obtained for = 2 mW pumping of the 15.15 GHz cavity setup is given in Supplementary Table 5.
Here the 8.671 inferred Schmidt number is limited by the tunability of our 100 pm filters.
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Supplementary Table 5 | Measured frequency-bin Schmidt eigenvalues and Schmidt number
for the 15.15 GHz BFC and = 2 mW pump power. The dominant Schmidt eigenvalues are

shown in boldface.

Number of Schmidt eigenvalues | Schmidt number
frequency bins

4 0.084

3 0.100

2 0.114

1 0.136

0 0.147 8.67

1 0.128

2 0.109

3 0.096

4 0.081

The frequency-bin Schmidt decomposition for our 5.03 GHz BFC yielded the Schmidt
eigenvalues and Schmidt number shown in Supplementary Table 6. The maximum possible
Schmidt number for this measurement is 19, and our 11.67 result is mainly limited by the
bandwidth and tunability of our 100 pm filters. Note that the results from Supplementary Tables

4 to 6 are also shown in Figure 5a of the main text.

Supplementary Table 6 | Measured frequency-bin Schmidt eigenvalues and Schmidt number
for the 5.03 GHz BFC and =~ 2 mW pump power. The dominant Schmidt eigenvalues are shown

in boldface.

Number of Schmidt eigenvalues | Number of Schmidt eigenvalues | Schmidt number
frequency bins frequency bins
9 0.020 1 0.101
8 0.026 2 0.066
7 0.028 3 0.048
6 0.032
-4 0.039
5 0.035 11.67
-5 0.033
4 0.041
3 0.052 - 0-030
2 0.074 -7 0.027
1 0.114 -8 0.023
0 0.190 -9 0.013

For comparison purposes, and to derive our frequency-binned BFC’s Hilbert-space
dimensionality under ideal conditions, we conclude this section by presenting theoretical results
for their Schmidt eigenvalues and their Schmidt numbers. According to main text’s Eq. (7), we

can write the BFC’s frequency-binned JSI as:

o2
2 _ sinc®(2.78ngAQ/2nBppy)
Y (ns A0, AD)|* = Fo———;
Zns=—No sinc?(2.78ngAQ /2B p )

Onen,» for =Nog < ng,n; < Ny, (25)
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where n ALl is the positive detuning of the signal photon’s radian frequency from degeneracy and
n;AQ is the negative detuning of the idler photon’s radian frequency from degeneracy, and 6, 5,
is the Kronecker delta function. The J, matrix, whose diagonalization provides the Schmidt

eigenvalues, is then trivially obtained, because it is diagonal, and its diagonal elements,

P 2
sinc“(2.78nsAQ/2nB
M ==x (278ns00/27BPM)___ for —N, < 1 < N,
Zns"z_No sinc2(2.78ngAQ/2mBpyy)

(26)

are the Schmidt eigenvalues we are seeking. From these eigenvalues the theoretical Schmidt

number for the frequency-binned BFC is therefore

2
=N O, SINC?(2.78n500/21Bpp)]

Ko=(Zno_y At = (27)

Zﬁs(’z_NO sinct(2.78nsAQ/2mBpy;)
Using the main text’s Eq. (6), the theoretical Schmidt numbers for the frequency-binned BFC
states are found to be 4.89, 20.21, and 34.39 for 45.32 GHz, 15.15 GHz, and 5.03 GHz FSR cavities,
respectively. Hence the ideal Hilbert-space dimensionalities for frequency-binned BFCs scales
with the FSR of the cavity used to generate that state.

We obtained our BFCs time-binned Schmidt eigenvalues from the visibilities of their measured
HOM-interference recurrences via the procedure described in the main text. Supplementary Tables
7(a), 7(b) and 7(c) show the dominant Schmidt eigenvalues we found for the 45.32 GHz, 15.15
GHz, and 5.03 GHz BFCs. These results appear in the main text’s Figure 5b.

Supplementary Table 7 | Measured dominant time-bin Schmidt eigenvalues for the BFCs

generated using (a) the 45.32 GHz cavity, (b) the 15.15 GHz cavity, and (c) the 5.03 GHz

cavity.
a b
Number of time bins | Schmidt eigenvalues | | Number of time bins | Schmidt eigenvalues
4 0.045 1 0.158
3 0.056 0 0.281
2 0.070
-1 0.158
1 0.087
c
0 0.109 Number of time bins | Schmidt eigenvalues
-1 0.087
1 0.181
-2 0.070
-3 0.056 0 0321
-4 0.045 -1 0.180
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Supplementary Discussion V
The main text and the Supplemental Information have presented compelling evidence of our
having generated a 648-dimensional state under the presumption that cw-pumped SPDC followed
by filtering through a highly-stabilized cavity produces a pure-state (or nearly pure-state) output.
With the support from the presumption afforded by SPDC perturbation theory [S22] and our prior
experimental work on unfiltered, pulse-pumped SPDC sources [S23, S24], and the new theoretical
modeling of Conjugate Franson interferometry, we can support the purity of our high-dimensional
BFC state. This section will introduce, for illustrative purposes, an entangled mixed state whose
HOM-interference recurrences, frequency-bin correlations, and Franson interference recurrences
are identical to those of the pure-state BFC. This mixed state, however, can be distinguished from
the pure-state BFC via conjugate-Franson interferometry. First, we discuss the Pure-state versus
mixed-state in filtered-SPDC measurements. Our pure-state BFC, in normalized form, is
[Wgre) = J Pprc (Q)ay (% + Q) ay (% - 9) |0) d2, (28)
where
Pprc(() o Zfl\"lo=-1‘/o (A;)igi((?zrfi?n)z

with [|@grc(Q)|? dQ = 1. This state’s JSI is therefore

Sy sinc?(AmAQ)
ZA m=—Nj —
ISlgrc(@) = |Parc (@I = / - [(Aw)” + (@ — mAD]E (30)

\/zﬁg_No sinc2(AnAQ)

(29)

It is obvious that the BFC’s frequency-bin correlations are immediate consequences of its JSI.
From Eq. (19), we see that the BFC’s Franson interference recurrences are determined by that
state’s JSI. Finally, because ®gpc(—Q) = Pgpc(Q), Eq. (6) shows that the BFC’s HOM-
interference recurrences are also determined by that state’s JSI. Hence, entangled mixed states that
possess this same JSI and a symmetric JSA cannot be distinguished from the BFC by means of
any of the measurements we have performed. To illustrate that possibility, we now introduce the
entangled frequency-pair state (EFS).

The EFS is an entangled mixed state whose density operator is

No
PEFs = z PErs(m) |¢g;2> <¢g§§|. (1)
m=0
where
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m ~ w. N w
Wiy = J of (Waf (2 +0)a) (=2 - ) 10) da, (32)

2 2
with
0) 1
Prps (V) X ez (33)
(m) 1 sinc(AmAQ) sinc(AmAQ) _
Ppps () \/E((Aw)2+(n+mm)2 (Aa))2+(ﬂ—mAQ)2)’ form =1,2, ..., Ny, (34)

f |d>g?g (Q)]?dQ = 1, for all m, and the {pgrs(m)} being a probability mass function that makes
the EFS’s JSI match that of the BFC state, i.e.,

N ™ |
ISlers(@) = ) pers(m)|[@GRO)| = [@prc(@F = JSTgc(). (35)
m=0

Because the EFS and BFC have identical JSIs, their frequency-bin correlations and Franson

interference recurrences will be indistinguishable. In addition, because ®@gpc(—Q) = Pgpc(Q)

and (Dg?g(—ﬂ) = Cbgg (), these two states will also have the same HOM-interference
recurrences. Together, these results imply that our paper’s measurements cannot distinguish
between a BFC and the EFS that has the same JSI.

Next, we move on to the discussion of Conjugate-Franson interferometry, which was proposed
in Ref. [S17] for security checking in time-frequency-entangled, high-dimensional quantum key
distribution. The basic configuration for conjugate-Franson interferometry is shown in main text’s
Figure 6a. Conjugate-Franson interferometry of the BFC and the EFS turn out to have the

following coincidence rates,
RIS, ) o 1+ | 0 Re[ e (@) Pprc(@ - 2! @570, 36)

and

No
REFS (s, 0 o< 1+ ) pges(im) f dORe| DY (D DTQ — 2w,)e@s+0], (37)
m=0

where ¢g and ¢, are phase shifts incurred by wavelength-scale length differences between the
two arms of each MZI. It is clear from Eqgs. (36) and (37) that the conjugate-Franson
interferometer’s single-sideband modulation in one arm of each of its MZIs prevents their
coincidence rates from being determined by their input states JSIs. Indeed, it is easily shown, from

Egs. (36) and (37), that these conjugate-Franson coincidence rates can be rewritten as

RE (s, &1) < 1+ [ dt]Tlgpc (V) cos(wpT + ds + &)), (33)
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and
RY;>(ds, &) o 1+ [ dt]Tlgps (1) cos(wmt + ds + dy), (39)
where the (normalized) joint-temporal intensities (JTIs) are given by JTIgpc(t) = |Wgpc(T)|? and

2
JTlgrs(T) = Z%"zopEFs(m)|‘ngg(t)| . Thus it is not surprising that conjugate-Franson

interferometry should be able to discriminate between the BFC and the EFS even when they have
identical JSIs.

The BFC only has appreciable conjugate-Franson interference at w,, = |k|AQ for |k| =
1,2,...,2N, where its visibilities satisfy
ZNO_lkl sinc(AmAQ)sinc[A(m + |k|)AQ

m=—N0
40
211\50:—1\10 sinc2(AnAQ) (40)

Verc(kAQ) =

In contrast, the EFS has only appreciable conjugate-Franson interference at |k| = 1,2, ..., 2N,

where its visibilities obey

Vs e (eA) (eAQD) sinc?(24kAQ)
BFC = =% — :
0 , sinc (AnAQ)

n=-N

(41)

These results provide a clear and measurable signature for the BFC, as shown in the main text’s
Figures 6b and 6¢ for the 45.32 GHz BFC and its related EFS and in Supplementary Figures 6 and
7, for the 15.15 GHz cavity and 5.03 cavity cases respectively.

a b
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Supplementary Figure 6 | Visibilities of conjugate-Franson interference recurrences for the
15.15 GHz BFC and the EFS with the same JSI. (a) BFC conjugate-Franson interference has

high-visibility recurrences and they occur only when the interferometer frequency offset is kA()
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for integer k. (b) EFS conjugate-Franson interference has low-visibility recurrences and they only

occur when the interferometer frequency offset is 2kA() for integer k.
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Supplementary Figure 7 | Visibilities of conjugate-Franson interference recurrences for the
5.03 GHz BFC and the EFS with the same JSI. (a) BFC conjugate-Franson interference has
high-visibility recurrences and they occur only when the interferometer frequency offset is kA()
for integer k. (b) EFS conjugate-Franson interference has low-visibility recurrences and they only

occur when the interferometer frequency offset is 2kA() for integer k.
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