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Frequency microcombs with microwave and millimeter-wave repetition rates provide a compact solution for
coherent communication and information processing. The implementation of these microcombs using a
CMOS-compatible platform further paves the way for large-scale photonic integration and modularity. Here,
we demonstrate free-running soliton microcombs with K-band repetition rates with very low phase noise over
a 4 GHz pump detuning range reaching −117 �−123� dBc∕Hz at 10 kHz offset for a 19.7 (10) GHz carrier with-
out active pump stabilization, exceeding commercial electronic microwave oscillators at frequency offsets above
40 kHz. The minimum laser noise to soliton microwave signal transduction factor observed is −73 dB. This noise
performance is achieved using a hybridized dual-mode for soliton generation to achieve passive thermal
stabilization and minimal soliton spectrum shift from prior Raman scattering and dispersive wave formation.
We further examine the locking of the repetition rate to an external ultrastable photonic oscillator to illustrate
the feasibility of phase noise suppression below the thermorefractive noise limits of microresonator frequency
combs. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.521282

1. INTRODUCTION

The emergence of microresonator-based frequency combs (mi-
crocombs) has shaped the path toward miniaturized and scal-
able photonic devices [1–4]. In addition to their compactness,
microcombs can be designed with comb spacing or free spectral
ranges (FSR) from 2.6 GHz up to 1 THz [5–8] as opposed to
fiber or solid-state mode-locked lasers where the comb funda-
mental repetition rate is often in the GHz range due to the bulk
materials and cavity sizes [9–13]. Dissipative Kerr solitons
(DKSs), where the temporal shape of the pulse is preserved due
to achieving a balance between nonlinear gain and dispersion,
can form in the microresonator [14–19]. The smooth spectrum
and high coherence of the comb lines make DKS suitable for a
wide variety of applications, such as optical frequency synthesis
[20], optical clockworks [6], microwave generation [21,22], co-
herent optical communications [23], distance measurements
[24,25], exoplanet searching [26], and optical coherence
tomography [27].

Microwave signals derived from frequency combs feature
high spectral purity because they are derived from a large division

of the noise from the optical to the microwave frequencies via
photodetection of the pulse train [28]. As a result, the small size,
weight, and power (SWaP) and optical-to-microwave noise re-
duction have increased interest in microcombs, including those
with low repetition rates [5,29]. Recently, DKS with microwave
FSR has been demonstrated in different structures and materials
such as crystalline microresonators [21,30,31], silica [32–35],
silicon nitride (Si3N4) [7,8,14,22,36–39], and lithium niobate
[40]. In particular, complementary metal–oxide semiconductor
(CMOS) compatible planar integrated microresonators are of
great interest because of their monolithic electronic and pho-
tonic integration capabilities. The lowest phase noise for a mi-
crowave carrier was achieved in crystalline microresonators
[21,30]; however, they are not CMOS compatible for large-scale
integration. Silica has demonstrated very low-noise microwave
signal carriers due to their low thermal noise, but the low index of
silica makes it difficult for monolithic integration, leading to the
use of tapered fibers for optical coupling of the resonator
[32,33]. Si3N4 microresonators show the most promising path
toward full monolithic integration due to their integrated planar
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design and the simplicity of mode and dispersion engineering
compared to the abovementioned materials; however, the
generated microwave signals from these microresonators to
date have shown higher phase noise compared to other
materials [22,36].

The noise sources in the DKS-based microwave oscillators
have been studied extensively [22,31,32,41–43]. The perfor-
mance of these microwave oscillators still has not reached their
fundamental limit given by the fundamental thermorefractive
noise (TRN) of the microresonators [44,45] due to the pres-
ence of other higher noise sources such as laser phase noise
transduction due to detuning dependent Raman self-frequency
shift (RSFS) and soliton recoil induced by dispersive waves
[31,42,46,47]. Such a phenomenon has been exploited to re-
duce the phase noise of the soliton repetition rate by operating
on a narrow pump detuning region such that RSFS is balanced
by soliton recoil where the repetition rate dependence on de-
tuning is minimized, which is known as quiet point operation
[41]. Furthermore, the use of an auxiliary mode has been dem-
onstrated to provide passive thermal stabilization of the reso-
nator and hence reduce the repetition rate phase noise
[42,48,49]. The auxiliary mode provides a cooling effect such
that the auxiliary mode pins the main resonance, which leads to
fixed pump-cavity detuning. Also, it has been shown that power
fluctuations within the microresonator can couple to the phase
noise of the soliton repetition rate [50]. Dispersive waves in-
duced by avoided mode crossing (AMX) [32] introduce addi-
tional spatiotemporal thermal noise to the soliton repetition
rate through uncorrelated thermal fluctuations between differ-
ent modes of the microresonator.

Here, we show that a soliton with a low phase noise over a
large 4 GHz detuning range can be achieved by both minimiz-
ing the detuning-dependent RFSS and soliton recoil, and the
use of a hybridized mode for self-thermal stabilization and a
stable soliton generation. We achieve a measured single-side-
band phase noise lower than −110 dBc∕Hz at 10 kHz offset
from the 19.69 GHz carrier over the detuning range reaching
a minimum of −117 dBc∕Hz (−123 dBc∕Hz-scaled to
10 GHz), which is, to the best of our knowledge, the lowest
phase noise achieved in free-running microwave chip-based
DKS without applying any active stabilization. Furthermore,
we show that active stabilization of the DKS can overcome
the TRN by locking the soliton repetition rate to an external
reference derived from fiber-based frequency combs, with a re-
sulting microwave phase noise lower than the microresona-
tor TRN.

2. RESULTS AND DISCUSSION

A. Single Soliton Generation
To generate a self-stabilized soliton microcomb, a tunable ex-
ternal cavity diode laser (ECDL) is amplified by an L-band
erbium-doped fiber amplifier (EDFA), sent to a polarization
beam splitter (PBS) to select the TM mode, and then coupled
to a strongly coupled dispersion-managed paw-shaped compact
Si3N4 microresonator with a single facet coupling loss of 3 dB
resulting in ≈800 mW on-chip power. This is illustrated in
Fig. 1(a). A single soliton is generated via manual forward pie-
zoelectric laser wavelength tuning into the resonance, followed

by a small backward detuning to fall into the soliton state
[18,51,52]. The soliton has an existence range of several GHz
due to the auxiliary mode; once the soliton is generated, it stays
for hours without any active stabilization. At the output, a fiber
Bragg grating (FBG) is used to filter the pump from the spec-
trum before amplifying the comb power to ≈20 mW. The am-
plified comb is subsequently sent into a fast high-power
photodiode and the detected radio frequency (RF) beat is
filtered by a bandpass filter and amplified to ≈7.9 dBm by
a low-phase noise RF amplifier.

The free spectral range (FSR) and loaded quality factor (Q)
of the fundamental TE mode are ≈19.69 GHz and ≈1.4 mil-
lion, respectively. The optical spectrum of the 19.69 GHz sol-
iton is shown in Fig. 1(c) via an optical spectrum analyzer
(OSA; Yokogawa) with a 50 pm resolution. The measured local
second-order dispersion near the AMX is found to beD2∕2π �
30.1� 4.6 kHz (see Appendix A). The presence of third-order
dispersion leads to the formation of a dispersive wave near
1870 nm, which leads to asymmetry in the optical spectrum.
Such asymmetry and the presence of an AMX signature at the
pump result in the spectrum differing from a baseline sech2 fit,
as illustrated in Fig. 1(c). By using the comb lines around the
pump, an example sech2 fit is shown in orange, where there is
no OSA-discernible soliton self-frequency and recoil shift from
the pump.

B. Noise and Instability Characterization
Figure 2(a) shows the detected microwave signal at 19.69 GHz
and phase noise characteristics in the free-running state. The
detected microwave beat RF spectrum is shown in Fig. 2(b)
with 1 kHz RBW. The absolute single-sideband (SSB) phase
noise power spectral density of the 19.69 GHz microwave car-
rier is measured using a phase noise analyzer (Rohde & Schwarz
FSWP26) and reaches −85 dBc∕Hz at 1 kHz offset,
−117 dBc∕Hz at 10 kHz, and −137 dBc∕Hz at 100 kHz.
At higher offset frequencies, the microresonator noise is limited
at −147 dBc∕Hz, which is about 3 dB higher than the esti-
mated shot noise. This higher noise floor is caused by amplified
spontaneous emission (ASE) from EDFA [53].

The soliton repetition rate is expressed as

f rep �
1

2π

�
D1 �

D2

D1

Ω�Δ�
�
, (1)

where D1∕2π is the FSR and D2∕2π is the second-order
dispersion of the microresonator, Ω�Δ� is the detuning depen-
dent total spectrum shift due to the Raman-induced soliton
self-frequency shift (SSFS) ΩRaman and the dispersive-wave-
induced frequency recoil of the solitonΩRecoil.Δ is the difference
between the pump frequency and the cold cavity frequency. The
soliton repetition rate phase noise originates from different
sources. It can be seen that the contribution of the fluctuations
of Ω�Δ� to f rep can be reduced by minimizing D2 or Ω�Δ�, or
both. Besides, the different contributions of soliton repetition
rate noise Sϕf rep

can be expressed as [22,32]

Sϕf rep
� β2Sδf ,p �

α2

f 2 SRIN,p � γ2ω2
pSAMX � D2

1STRN � SQ ,

(2)
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where Sδf ,p is the pump phase noise, β2 � ∂f rep

∂δf p
is the optical-to-

microwave phase transduction (PM-to-PM) coefficient of the la-
ser noise, SRIN,p is the pump intensity noise that is related to the
soliton repetition rate phase noise by applying a 1∕f 2 factor, and
α2 is the transduction factor of the intensity noise of the pump to
the phase noise of soliton repetition rate through the Kerr effect
[22,31,50]. SAMX is the AMX-induced spatiotemporal thermal
noise of the hybridized mode [32], ωp is the frequency of the
pump laser, γ2 is the transduction factor of the spatiotemporal
thermal fluctuations to the phase noise of soliton repetition rate,
STRN is the thermorefractive noise of the soliton mode [44], and
SQ is the quantum jitter. First, we measure the frequency noise
of our ECDL by heterodyne beating with a 1 Hz linewidth stable
laser to estimate the influence of the frequency noise of our
ECDL in the generated microwave signal. The noise transfer
from our laser to microwave noise (PM-to-PM) transduction
coefficient (β2) is estimated at −73 dB, as shown in black in

Fig. 2(a). This is evidenced by the ECDL noise features im-
printed on the microwave beat note at an offset below 2 kHz
as well as a slight noise bump at the 20 kHz offset. This is further
verified by modulating the phase of the pump laser by a 5 kHz
sinusoidal signal to act as a calibration tone in the soliton micro-
wave beat power spectral density [31]. Compared to the best
existing Si3N4-based low repetition rate free-running DKS
[22], our PM-to-PM transduction is 18 dB lower.

The laser PM-to-PM is only 7 dB higher than the limit im-
posed by phase noise reduction due to the optical-to-microwave

division (20 log10
f pump

f rep
� 80 dB). In addition, we investigate

the noise contribution preventing us from achieving even lower
noise. The intensity fluctuation of the laser pump and EDFA is
measured as the relative intensity noise (RIN), as shown in
Fig. 2(c). The intensity noise of the pump transduction to
the phase noise in the microresonator does not seem to be a
limiting factor at any frequency offset, as shown in orange

Fig. 1. (a) Illustration of the experimental setup of low noise microwave generation due to the hybridized mode using polarization diverse soliton.
(b) Microscope images of the PAW resonator. Right panel illustrates the dual auxiliary (TM0) and soliton mode (TE0) interactions. (c) Measured
optical spectrum of the polarization dissipative soliton. The spectrum does not fit a sech2 profile due to its asymmetry. Inset: optical spectrum near
the pump showing a signature of an AMX.
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in Fig. 2(a), where the fit represents the maximum possible
noise transduction. The dominant noise at offsets higher than
2 kHz corresponds to the dispersive wave noise due to the
AMX among the soliton mode, and fundamental transverse
electric mode (TE0), and the fundamental transverse magnetic
mode (TM0). The calculation of the AMX-induced spatiotem-
poral thermal noise fits well with the measured phase noise of
the soliton at offsets higher than 2 kHz with γ2 � 58 dB in our
microcomb subsystem (see Appendix B).

In prior chip-based microresonators, similar performance re-
lies on finding a quiet point, which is a specialized detuning
where the laser frequency noise influence on the repetition
rate noise is minimal due to the intricate balance between
the Raman self-frequency shift and soliton recoil, as shown

in Eq. (1) [41]. The existence range of such detuning is on
the order of the cavity linewidth; hence, active stabilization
of the pump-cavity detuning is required [31,32,41]. In our
microresonator, we demonstrate that the soliton repetition rate
phase noise can be reduced by minimizing Ω. Thus, no active
stabilization of the pump or the resonator is used. We are able
to achieve a very low phase noise operation covering more than
4 GHz detuning, as shown in Fig. 3. This is due to the effect of
the hybridized mode on minimizing the thermal impact of the
pump-cavity detuning [48,51]. We also compare our microre-
sonator performance with commercially available high-perfor-
mance microwave local oscillators where the phase noise of the
soliton microwave beat note becomes comparable to or better
than that for offset frequencies higher than 20 kHz. Table 1

(a)

(b) (c)

(e)(d)

Fig. 2. Characterization of the free-running soliton repetition rate. (a) Single-sideband (SSB) phase noise was measured with the free-running
microresonator. The estimated shot noise floor is −150 dBc∕Hz. Pump laser phase noise transduction to repetition rate noise is shown in black. The
estimated noise induced by pump intensity fluctuation is plotted in orange, which is not the noise limiting factor. The simulated AMX-induced noise
originating from intermode thermorefractive noise (TRN) is illustrated in green. Repetition rate TRN is the fundamental limit of the generated
microwave beat and is shown in light gray. For comparison, the noise of a Rohde & Schwarz SMA100B signal generator is illustrated in purple. The
phase noise analyzer FSWP26 instrument limit is shown as the dashed light brown line. Inset: pump laser phase noise transduction at 2 kHz offset for
0 to 4 GHz detuning. (b) RF spectrum of the microwave repetition rate beat signal with a resolution bandwidth (RBW) of 1 kHz. (c) Relative
intensity noise (RIN) of the pump laser and EDFA. (d) A frequency counter measurement shows the real-time trace of the repetition rate, with a
long-term average drift of −37.8 Hz∕min over 85 min. (e) Repetition-rate beat Allan deviation computed from single-sideband phase noise met-
rology [(a) in red] and frequency counting [(d) in black].
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illustrates a comparison of microwave oscillators using a free-
running chip-based microcomb.

The fractional frequency Allan deviation of our free-run-
ning microcomb is shown in Fig. 2(e). For short integration
times, the Allan deviation is calculated by integrating the
phase noise from Fig. 2(a); the result obtained from a fre-
quency counter with a gate time of 10 ms [shown in
Fig. 2(d)], without removing the linear drift, is used to com-
pute the Allan deviation for longer integration times. The ob-
tained Allan deviations for both cases show good overlap
between the 10 ms and 1 s integration time, with a free-
running Allan deviation at 8.1 × 10−9 in 1 s. Furthermore,
the long-term stability of the free-running microcomb is do-
minated by the pump laser frequency fluctuations shown in
the same figure.

C. Detuning Dependent Phase Noise Properties
We examine the phase noise of the microwave beat signal along
the large soliton existence range to probe the possibility of de-
graded phase noise for different detuning. Figure 3(a) shows the
19.69 GHz SSB phase at 10 kHz offset for different detunings
and the corresponding repetition rate shift. First, the mono-
tonic linear behavior of the repetition rate frequency shift with
respect to detuning demonstrates the absence of quiet point
[31,41,55]. This also confirms that our low-noise operation
does not manifest itself as a quiet-point operation. This is also
experimentally verified by the absence of a significant soliton
spectrum frequency shift with respect to our pump wavelength
in Fig. 3(c). However, we still observe an increase of more than
20 dB in additional noise as we change the detuning. Such ex-
cess noise potentially originates from the formation of breather
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the repetition rate shift shown below. (b) SSB phase noise at different detuning frequencies [indicated by color in accordance with (a)]. (c) Optical
spectrum at different detuning. Inset: spectrum near the pump showing absence of the soliton spectrum shift. (d)–(f ) RF spectrum of the repetition
rate with RBW of 50 kHz at three different detunings that match (c).
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solitons due to AMX [56]. The amplitude modulation of the
soliton increases the amplitude to phase noise conversion inside
the microresonator, as shown in Fig. 3(b) where the pump fre-
quency noise features at 2 kHz and 20 kHz offset (highlighted
in the blue shaded regions) are now hidden (under the excess
noise). Figures 3(d)–3(f ) show the different RF spectra for dif-
ferent detunings before and after the aforementioned soliton
breather formation, which starts at a detuning of ≈4.2 GHz,
where the formation of sidebands on the microwave beat note
of the soliton with a fundamental breathing frequency of
≈291.6 MHz starts to appear.

D. Repetition Rate Locking
We test whether the thermorefractive noise poses a fundamen-
tal limit when actively stabilizing the soliton repetition rate to
an external reference, as shown in Fig. 4(a). We synthesize an
ultralow phase noise 20 GHz microwave signal using a com-
mercial self-referenced fiber frequency comb (FFC) system with
a repetition rate of 250 MHz. One of the comb lines of the
FFC is locked to an ultrastable laser with 1 Hz linewidth after
subtraction of the carrier envelope offset frequency f ceo to
make the locking independent of f ceo [57]. The low repetition
rate of the FFC results in low power in the 80th harmonic of
the repetition rate (80f FFC

rep � 20 GHz). Cascaded Mach–
Zehnder fiber interferometers are used as interleavers for rep-
etition rate multiplication to overcome this problem. This
setup increases the signal level of the photodetected pulse train
and reduces the amplitude-to-phase noise conversion in the
photodetection [58]. An RF bandpass filter is used to select
the 20 GHz microwave signal, and then amplified by a low-
phase noise amplifier to 2 dBm. The synthesized 20 GHz phase
noise is more than 10 dB lower than the TRN of our micro-
resonator at 1 kHz offset. The 20 GHz microwave signal for the
FFC is then mixed with the soliton microwave beat to generate
a ≈310 MHz signal that is further mixed down to DC with a
low-noise microwave generator (Rohde & Schwarz SMA100B)
to generate the error signal. This error signal is fed to the PID
controller that actuates the pump power using an intensity
modulator (IM) before the microresonator. In our setup, the
modulation of the pump power, rather than pump detuning,
via ECDL current modulation provides a better lock-in sensi-
tivity (see Appendix C). Figure 4(b) shows the phase noise of

the stabilized soliton microwave beat, with SSB phase noise
of −102 dBc∕Hz at 100 Hz offset (instrument limited),
−127 dBc∕Hz at 1 kHz offset, and −136 dBc∕Hz at
10 kHz offset. At 1 kHz the SSB phase noise is 14 dB lower
than the optical-to-microwave divided TRN limit. This implies
that one can overcome the TRN limit of SiN microresonators
via active stabilization. Figure 4(c) shows the RF spectrum with
1 Hz RBW to demonstrate the long-term drift difference be-
tween the free-running and stabilized microwave beat notes.
The stabilized soliton microwave beat note can track the fre-
quency of the microwave signal 80f FFC

rep over a 25 kHz range
before losing the servo lock, as shown in Fig. 4(d).

E. All-Optical Repetition Rate Locking
With the verified stabilization below the TRN bounds, we next
stabilize the soliton microwave beat note using all-optical sta-
bilization through the technique of two-point optical frequency
division [59,60]. Figure 5(a) shows the experimental setup
where the soliton spectrum is combined with the fiber comb
spectrum, and then two optical lines of the soliton microcomb
are selected using dense wavelength-division multiplexing
(DWDM) filters. Each channel is sent into a photodiode to
detect the beat between the soliton microcomb line and the
fiber comb line. The two generated RF beat notes are mixed
to generate a frequency that contains the relative noise between
the two soliton microcomb lines. The resultant beat is mixed
down to DC using an RF signal generator and sent into the
servo controller. Figure 5(b) shows the three different optical
channel spacings used in this measurement: 100 GHz,
400 GHz, and 1 THz. The corresponding stabilized phase
noise for each of the three channel spacings is shown in
Fig. 5(c), where the experimental improvement in each case
follows the 20 log10f spacing. We note that the close-in phase
noise, such as at 100 Hz, shows more than a 40 dB improve-
ment, even below the microresonator TRN. Further phase
noise reduction can be achieved by increasing the optical
spacing of the two references. This demonstration verifies
that the microwave-rate DKS microcombs can aid in two-point
optical frequency division efforts, inheriting the stability of
the two references to generate stable carrier signals below
thermorefractive noise bounds.

Table 1. Phase Noise Performance Comparison of Low Repetition Rate Chip-Based DKSa

Ref. Material Rep-Rate (GHz) L(f ) @ 10 kHz (dBc/Hz) Coupling Pump active control

Ref. [35] Silica 22 −112 Tapered fiber Pump-cavity detuning
Ref. [33] Silica 21.9 −94 Tapered fiber None
Ref. [32] Silica 15.2 −111 Tapered fiber Pump-cavity detuning
Ref. [40] LN 19.8 −102 Integrated waveguide None
Ref. [22] SiN 19.6 −110 Integrated waveguide Pump-cavity detuning
Ref. [36] SiN 20.5 −80 Integrated waveguide Pump-cavity detuning
Ref. [38] SiN 10.8 −95 Integrated waveguide Laser injection locking
Ref. [39] SiN 20 −96 Integrated waveguide Laser injection locking
Ref. [54] SiN 25.25 −106 Integrated waveguide None
Ref. [54] SiN 25.25 −114 Integrated waveguide Dual-pump RIN
This work SiN 19.69 −117 Integrated waveguide None

aAll scaled to 19.69 GHz.
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3. CONCLUSION

In this work, we demonstrated a low repetition rate soliton
based on a Si3N4 microresonator with a record low phase noise
over a large pump detuning range without requiring active
pump cavity detuning stabilization. The low-phase noise
Si3N4 microresonator provides a compact and scalable solution
for clean microwave signal generation. The measured free-
running phase noise (scaled to 10 GHz) of −123 dBc∕Hz at
10 kHz offset frequency is lower than that of existing chip-
based dissipative Kerr soliton sources [22,32,33,35,36,39,40].
The low-noise performance was achieved with the assistance
of an auxiliary mode and the minimal soliton spectrum shift
yielding a −73 dB PM-to-PM noise conversion from laser noise
to the soliton repetition rate. We have also observed AMX-
induced spatiotemporal noise limiting the performance of our
Si3N4 microresonator. Furthermore, we demonstrated that the
fundamental thermorefractive noise of the soliton microwave

signal can be suppressed by actively stabilizing our soliton to an
ultrastable fiber frequency comb oscillator. The achieved phase
noise of the stabilized soliton is 10 dB lower than the thermor-
efractive noise of the soliton. The use of an auxiliary mode with
orthogonal polarization and a similar intensity profile increases
the thermal correlation between the soliton mode and the dis-
persive wave mode, hence reducing the AMX-induced thermor-
efractive noise due to the difference in the intensity mode profile.
Further delocalization of the mode with larger mode volumes
and low confinement can lower the thermal noise of the micro-
resonator frequency combs.

APPENDIX A: LINEAR CHARACTERIZATION OF
THE MICRORESONATOR

Figure 6 shows the normalized transmission of the microreso-
nator, where a strong TE–TM mode coupling occurs near
1602 nm as well as 1557 nm. A histogram of the loaded quality
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bandpass filter; RF LPF, RF lowpass filter; LPN AMP, low-phase noise amplifier; Attn, attenuator; and PNA, phase noise analyzer. (b) SSB phase
noise of the stabilized repetition rate (blue) shows active stabilization below the TRN limit (gray). The phase noise analyzer instrument limit is shown
in light brown. (c) RF spectrum of the stabilized versus free-running repetition rate shown with 1 Hz RBW to examine the long-term frequency drift.
(d) RF spectrum of the locked soliton repetition rate showing fine-tuning control of the repetition rate. The RBW is 1 Hz. (e) Example spectrogram
of the repetition rate before and after locking.
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signal is down-mixed to DC and serves as the error signal. (b) Optical spectrum showing the separation between the comb pair. Three different
frequency separations are illustrated as examples. (c) SSB phase noise of the locked repetition rate showing close to 20log10�N � division.

Fig. 6. Linear characterization of the microresonator. (a) Normalized transmission. (b) Hybridized TE–TM mode near 1603 nm. (c) Histogram
of the loaded quality factor of the microresonator. (d) Integrated dispersion away from the avoided mode-crossing region.
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factor of all TE mode resonances is shown in Fig. 6(c). The
dispersion away from the avoided-mode crossing is slightly
anomalous with D2 of 18.3 kHz at 1595 nm and D3

of −0.6 kHz.

APPENDIX B: THERMOREFRACTIVE NOISE

The thermorefractive noise (TRN) limit of the Si3N4 resonator
embedded in a SiO2 substrate is simulated based on the fluc-
tuation-dissipation theorem as described in the literature
[44,61,62]. Using FEM, we solve the thermal fluctuation of
the microresonator δT̃ �~r,ω�, using a heat transfer equation
in the frequency domain,

iωρCνδT̃ �~r,ω� � κ∇2δT̃ �~r,ω� � iωT 0δS̃�~r,ω�, (B1)

where ρ is the material mass density, Cν is the heat capacity,
κ is the thermal conductivity, T 0 is the heat bath temperature,
and S̃ is the fluctuation of the entropy. Here, a periodic entropy

is used, which has the form S � F 0 cos�ωt�q�~r�, where q�~r� is
the normalized distribution of the electrical field intensity. The
dissipated energy can then be calculated using W diss �R

πκ
ωT 0

j∇T̃ �~r,ω�j2d3~r. The one-sided power spectral density
of the frequency fluctuation of the resonator due to the refrac-
tive index fluctuations can be written as

STRN � Sδω
ω
� 2ℏW diss

πF 2
0

coth

�
ℏω
2kBT

�
: (B2)

The above formulation can be extended to calculate the
thermal fluctuations due to the dispersive wave induced
by avoided-mode crossing SAMX , by taking q12�~r� �
q1�~r� − q2�~r�, where q12 represents the difference between
the normalized intensity profile of the two modes involved
in the AMX process [32]. SAMX , can also be expressed as

SAMX � STRN1 � STRN2 − 2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
STRN1STRN2

p
, (B3)

where STRN1 and STRN2 are the thermorefractive noise of the
soliton mode and the dispersive mode, respectively, and R is
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the thermal correlation between the two modes. The simulation
results for the TRN of the soliton of the microresonator are illus-
trated in Fig. 7(a). Also, the TRN due to the soliton mode family
and other modes is plotted on the same plot. Figure 7(b) shows
the frequency-dependent thermal correlations between modes.

APPENDIX C: CHOICE OF THE ACTUATOR

Figure 8 shows the difference between locking using the laser
current (detuning) or intensity modulator (power) where the
sensitivity of each actuator with respect to the soliton repetition
rate is shown in Figs. 8(b) and 8(c). The locking bandwidth
using detuning is limited to 5 kHz due to a lack of sensitivity
where higher loop gain is required. We choose to lock where a
bandwidth of 100 kHz can be achieved.
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