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Abstract Nonlinear wave mixing in mesoscopic silicon struc-
tures is a fundamental nonlinear process with broad impact
and applications. Silicon nanowire waveguides, in particular,
have large third-order Kerr nonlinearity, enabling salient and
abundant four-wave-mixing dynamics and functionalities. Be-
sides the Kerr effect, in silicon waveguides two-photon absorp-
tion generates high free-carrier densities, with corresponding
fifth-order nonlinearity in the forms of free-carrier dispersion
and free-carrier absorption. However, whether these fifth-order
free-carrier nonlinear effects can lead to six-wave-mixing dy-
namics still remains an open question until now. Here we
report the demonstration of free-carrier-induced six-wave mix-
ing in silicon nanowires. Unique features, including inverse
detuning dependence of six-wave-mixing efficiency and its
higher sensitivity to pump power, are originally observed and
verified by analytical prediction and numerical modeling. Ad-
ditionally, asymmetric sideband generation is observed for
different laser detunings, resulting from the phase-sensitive in-
teractions between free-carrier six-wave-mixing and Kerr four-

wave-mixing dynamics. These discoveries provide a new path
for nonlinear multi-wave interactions in nanoscale platforms.
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1. Introduction

Silicon solid-state nanophotonic structures have a large
third-order Kerr nonlinearity and strong light confinement,
enabling nonlinear optical dynamics with broad impact
and applications. Four-wave mixing (FWM), as an ele-
mental nonlinear process, has been deeply investigated in
nanoscale silicon platforms [1]–[5] and implemented in a
multitude of functionalities, ranging from optical signal re-
generation [6], mid-infrared frequency conversion [7], [8],
phase conjugation [9], continuum generation [10], regen-
erative oscillations [11], correlated photon generation [12],
and spectroscopy [13]. Essentially, FWM arises when two
intense laser fields cause oscillation of the refractive in-
dex via the Kerr effect, which in turn imposes nonlinear
phase modulation back onto the input driving fields them-
selves, producing modulation sidebands at new frequen-
cies that satisfy photon energy and momentum conserva-
tion conditions [14], [15]. In silicon nonlinear waveguides,
in addition to the Kerr effect, two-photon absorption (TPA)
generates considerable free-carrier densities, with corre-
sponding nonlinearity and change of refractive index via
free-carrier dispersion (FCD) and free-carrier absorption
(FCA) [14]. Importantly, the generation of free-carrier den-
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sity via TPA is already quadratically proportional to the in-
cident laser intensity, making the cascaded refractive-index
modulation via FCA/FCD a fifth-order nonlinear dynamics
on top of the third-order Kerr nonlinearity [16]–[24]. Var-
ious FCD/FCA-induced nonlinear phenomena have been
demonstrated in silicon, such as soliton fission [18], [19],
soliton compression [20], frequency shift [21], and spec-
trum broadening [23], [24]. However, a fundamentally im-
portant question—akin to the third-order Kerr effect gener-
ating FWM, whether the fifth-order FCD/FCA can give rise
to six-wave-mixing dynamics—has not been probed until
now.

Here we present the demonstration of free-carrier-
induced six-wave mixing (FC-SWM) in silicon waveg-
uides. We show a non-dispersion-induced inverse depen-
dence of the FC-SWM strength on input laser detunings,
which confirms the existence of FC-SWM resulting in the
predominance of FC-SWM over FWM at small laser detun-
ings. Furthermore, we map out the stronger dependence of
FC-SWM on input pump power compared to conventional
Kerr FWM. Finally, we observe asymmetric sideband gen-
eration efficiencies and identify the phase-sensitive inter-
action between FC-SWM and FWM as the mechanism for
such symmetry breaking.
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Figure 1 Six-wave-mixing spectra and nanowire characteristics. (a) The origin of Kerr FWM and FC-SWM in silicon nanowire
waveguide with two input laser frequencies. (b) Scanning electron micrographs of the measured nanowire (upper panel) and simulated
mode profile of the fundamental TE11 mode using finite-difference time-domain-based mode solver (lower panel). (c) Nanowire
dispersion of the TE11 mode (left y -axis) and the corresponding linear phase mismatch (right y -axis). (d) Measured wave-mixing
spectra with 0.28 THz detuning, and the generated sideband idler powers at smaller (s1) and bigger (s2) frequencies. (e) Numerically
simulated wave-mixing spectra using the NLSE model with experimental parameters, for the case of solely FWM (lower) and Drude
FC-SWM plus FWM (upper). The spectrum power discrepancies between numerical and experimental results are due to the fact that
the experimental pulse powers were averaged by the 50 MHz pulse repetition rate.

2. Concept and theoretical analysis

Kerr and free-carrier nonlinear dynamics in silicon can be
described by the nonlinear Schrödinger equation (NLSE),
which when coupled with the free-carrier generation and
recombination dynamics are governed by [14]
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In Eqs. (1) and (2), E is the slowly varying envelope of
the overall input fields into the nanowire waveguide, βn is
the nth-order dispersion, γ is the effective Kerr nonlinear
coefficient, βTPA is the degenerate TPA coefficient, Nc is the
free-carrier density, δ and σ are the Drude FCD and FCA
coefficients, respectively, A0 denotes the effective mode
area, τc is the free-carrier lifetime, h is Planck’s constant,
and v0 is the pump frequency. To analytically derive the
wave-mixing process, the input light field E is described
by A1 cos(ω1t) + A2 cos(ω2t). As shown in Fig. 1(a), here
we utilize two input laser frequencies to study the degener-
ate FWM via χ (3)(2ω1 − ω2; ω1, ω1, ω2) and the degen-
erate FC-SWM via χ

(5)
FC (2ω1 − ω2; ω1, ω1,−ω1, ω1, ω2).

Such two-frequency configuration can greatly reduce the

complexity of theoretical derivation without loss of gen-
erality (more discussions detailed in Supporting Informa-
tion [25]). Meanwhile, it should be noted that χ

(5)
FC is in-

duced by FCD/FCA, and has no contribution from the
fifth-order electronic nonlinearity n4 [14]. Considering the
evolution of the input field and neglecting the dispersion of
the waveguide, the nonlinear wave-mixing strength (N M)
experienced by the input field E can be written as (detailed
derivation in Supporting Information [25])

N M = exp

(
iG cos(bt) + i D

b
sin(bt)

)

× (1 + P cos(bt)) ×
(

1 + A

b
sin(bt)

)
.
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Here b = ω1 − ω2 is the frequency detuning between
input lasers, P = −L A1 A2βTPA(2A0)−1, G = L A1 A2γ ,
A = Dσδ−1, D = −3L A3

1 A2δβTPA(4A0
2hv0)−1, and L is

the waveguide length. Herein G, P , D, and A represent
the effects of Kerr, TPA, FCD, and FCA, respectively. In
our study we consider that TPA, FCA, and FCD respond in-
stantaneously to the beating oscillation corresponding to the
input laser detunings tested in the experiments (b/2π < 1
THz) [26]. Importantly, Eq. (3) shows that the Kerr and FCD
effects cause nonlinear phase modulations that have a π/2
phase offset with respect to each other (the first and second
terms on the right-hand side of Eq. (3), respectively), while
TPA and FCA cause nonlinear intensity modulations that
also have a π/2 phase offset (the third and fourth terms on
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the right-hand side of Eq. (3), respectively). Furthermore,
Eq. (3) can be re-written as

N M = exp(i H sin(bt + θ )) × (1 + Mcos(bt + ψ)). (4)

Therein, H =
√

(D/b2) + G2, M =
√

(A/b)2 + P2,
θ = arctan(Gb/D), π/2 ≤ θ < π , and ψ = arctan(−A
/Pb), π/2 ≤ ψ < π . The values of θ and ψ are deter-
mined by the signs of G, P , D, and A. Using the Bessel
expansion, we thus arrive at

N M =
1∑

n=−1

Jn (H ) einbt+inθ

×
(

1 + 1

2
M

(
eibt+iψ + e−ibt−iψ

))
.

(5)

In Eq. (5), Jn is the nth-order Bessel function. Simpli-
fying Eq. (5) with frequency detunings ±b, respectively,
we finally obtain [25]

N Mb = 1

2
M J0eiψ + J1eiθ , (6)

N M−b = 1

2
M J0e−iψ − J1e−iθ . (7)

First, as seen in Eq. (5) and the expressions of H and
M , the FC-SWM components induced by FCD and FCA
have an inverse dependence on the input laser detuning
(1/b), while FWM from Kerr and TPA is detuning inde-
pendent. Second, the effective fifth-order FC-SWM com-
ponents are proportional to A3

1 A2 (seen in the expressions
of D and A), while the third-order FWM components are
only proportional to A1 A2 (seen in the expressions of G
and P), implying that FC-SWM has a higher sensitivity
than FWM. Third, comparing Eqs. (6) and (7), under the
combinational effects of Kerr, TPA, FCA, and FCD in sil-
icon, the generated overall wave-mixing sideband power
(|N M±b|2) can be asymmetric for positive and negative in-
put laser detunings, even when the waveguide dispersion
is neglected. The exact extent of the asymmetry depends
on the parameters of the measured waveguide and input
light fields. We next present detailed FC-SWM and FWM
measurements to demonstrate and validate these theoretical
predications.

3. Experimental results and discussion

We study a 0.3-mm-long rib silicon nanowire fabricated
on a silicon-on-insulator wafer, with the scanning electron
micrograph shown in Fig. 1(b). Its numerically estimated
mode profile and corresponding dispersion of the funda-
mental TE11 mode are shown in Fig. 1(c). The measured
nanowire waveguide has a linear loss αl = 2 dB/cm, with
an effective mode area A0 = 1.3 × 10−13 m2, a degenerate
TPA coefficient βTPA = 9 × 10−12 m/W, a FCA coefficient

θ = 1.45 × 10−21m2, a FCD coefficient δ = 1.0 × 1020m2,
and a free-carrier recombination lifetime τc = 500 ps [14],
[21], [22]. The two incident drive lasers consist of a 50 MHz
repetition rate, 100 ps pulse width pump field (amplitude A1
and central angular frequency ω1) and a continuous-wave
(c.w.) signal field (amplitude A2 and angular frequency ω2).
The pump pulse train of maximum intra-waveguide peak
powers at 11.7 W generates high free-carrier densities on
the order of 1019 cm−3. The 50 MHz pulse repetition rate
allows sufficient time (more than 40τc) for complete free-
carrier recombination relaxation so that no inter-pulse in-
terference occurs. Moreover, with the small waveguide dis-
persion and short waveguide length, the dispersion-induced
linear phase mismatch �φ is negligibly small within the
examined 1550 nm to 1562 nm wavelength range: the max-
imum value of �φ × L is only 0.0037π , as shown in Fig.
1(c), which does not have appreciable impact on the wave-
mixing process [25], [27]–[29].

Figure 1(d) shows two examples of the wave-mixing
spectra generated in the silicon nanowire waveguide, with
input laser detunings equal to ±0.28 THz; the generated
sidebands are denoted as s1 and s2, respectively. Here the
input pulse peak power is 11.7 W and the c.w. power is
0.4 mW. Significantly, we observe that the output pulse
spectra have an apparent FCD-induced spectral blue shift
(∼0.03 THz) [20]–[24], and the output c.w. spectra exhibit
the feature of FCD-induced cross-phase modulation from
the pulse [28]. Consequently, the generated wave-mixing
idler spectra show complex and broadened structures. All
these evidences indicate that the measured wave-mixing
processes are conducted in a regime with strong nonlin-
ear free-carrier dynamics. To confirm this, Fig. 1(e), up-
per panel, shows the numerically simulated wave-mixing
spectrum using the NLSE model given by Eqs. (1) and
(2), which illustrates remarkable agreement with the mea-
surements without fitting. Meanwhile, we note that when
the free-carrier dynamics is eliminated from the model, as
shown in Fig. 1(e), lower panel, the modeled output spectra
lose all the salient features (line-shape broadening, asym-
metry, and spectral dips) observed in our measurements.

3.1. Inverse dependence of FC-SWM on input
pump-signal laser detuning

From the expressions of parameters H and M in Eqs. (4) and
(5), it is noted that the FC-SWM sideband power inversely
depends on the input laser detuning (1/b). Intrinsically, the
1/b factor originates from the temporal integration of |E |4
in the rate equation of carrier density Nc, that is, the slower
beating oscillation between the input lasers gives rise to
higher carrier density fluctuations, and potentially imposes
larger six-wave-mixing strengths [14]. To demonstrate such
dynamics, we scan the input laser detuning from −0.7 THz
to 0.7 THz by changing the input c.w. frequency and record
the wave-mixing sideband powers at each scan point, as
shown in Fig. 2(a). Intriguingly, we observe that for the
11.7 W input pulse, as the input laser detuning changes
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Figure 2 Direct detuning dependence of the Drude FC-SWM. (a) Experimentally measured wave-mixing sideband powers as a
function of input laser detuning. The gap in the middle detuning arises because, in such region, the generated sideband components
are covered by the pulse spectrum. The laser scanning step is 25 GHz. The inset shows more densely recorded data with 2.5 GHz
step within the closer detuning window from −0.3 THz to 0.3 THz. (b) Numerical (open circles) and analytical (solid lines) wave-mixing
sideband powers calculated as a function of laser detuning. The green circles and line are for FC-SWM and the red circles and line are
for pure FWM (without the free-carrier contributions). To compare theory with experiment, the calculated sideband powers are down
shifted by 23 dB to compensate for the 50 MHz pulse repetition rate and power attenuation in the measurement.

Figure 3 Strong dependences of FC-SWM on pump power. (a) Experimentally measured power transfer function between the input
pulse and generated wave-mixing sideband, under three different detunings: 0.025 THz (black), 0.25 THz (red), and 1.25 THz (blue).
The solid lines are linear fits of the experimental data, with the fitted slope coefficients listed below each corresponding line. (b)
Numerically simulated power transfer functions corresponding to the results in panel (a).

from ±0.3 THz to zero, the generated wave-mixing side-
band power exhibits an increase of about 3.0 dB, clearly
verifying the 1/b dependence prediction. To support the
measurements, Fig. 2(b) shows the corresponding numeri-
cal simulation via the NLSE model of Eqs. (1) and (2), as
well as the analytical calculation via Eq. (5), both achieving
remarkable agreements with our measurements. For com-
parison, in Fig. 2(b) we plot the theoretical FWM sideband
powers induced solely by the Kerr effect and TPA, which
show no detuning dependence, and confirms that the waveg-
uide dispersion is negligible compared to the intrinsic 1/b
dependence of FC-SWM [25]. Particularly, it is seen from
Fig. 2(b) that, when the laser detuning approaches zero,

FC-SWM becomes dominant over FWM (e.g., at 0.1 THz
detuning, the FC-SWM sideband is −24.0 dBm, about 4.0
dB larger than FWM), strongly supporting the existence of
FC-SWM in silicon.

3.2. Strong pump power dependency of
FC-SWM

From Eq. (5) and the expressions of P , G, D, and A, the
FWM strength caused by the third-order Kerr effect and
TPA is proportional to A1 A2, while the FC-SWM strength
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Table 1 Wave-mixing coefficients induced by different con-
stituents of nonlinear processes.

Effects NM−b NMb

Kerr+TPA −MJ0/2 + iJ1 −MJ0/2 + iJ1

TPA+FCA Meiψ/2 Me−iψ/2

Kerr+FCD −J1e−iθ J1eiθ

FCA+FCD −iMJ0/2 + J1 iMJ0/2 − J1

Kerr+FCA −iMJ0/2 + i J1 iMJ0/2 + i J1

TPA+FCD −iMJ0/2 + J1 −iMJ0/2 − J1

induced by FCD/FCA is proportional to A3
1 A2, rooting in

the fifth-order nonlinear property of FC-SWM. To observe
this higher pump power sensitivity of FC-SWM than FWM,
Fig. 3(a) and (b) plot the experimental and theoretical power
transfer functions between the input pulse peak power and
the generated wave-mixing sideband power, under three
different frequency detuning values: 0.025 THz, 0.25 THz,
and 1.25 THz. Particularly, with the 1/b scaling of the FC-
SWM demonstrated above, as the detuning decreases from
1.25 THz to 0.025 THz, the contribution of FC-SWM in the
overall wave-mixing process is substantially enhanced. Si-
multaneously the slope (linearly fitted) of the power transfer
function increases from 0.21 to 1.05, clearly illustrating the

stronger pump power dependence of FC-SWM over FWM.
Ideally, the FC-SWM (FWM) produces a power transfer
function with slope equal to 4 (2) [14], [15], but, with the
concurrent existence of TPA and FCA, the pulse and c.w.
laser fields are heavily attenuated in the nanowire waveg-
uide [21], [22], and resultantly the measured and calculated
power transfer functions are much less steep, as shown in
Fig. 3(a) and (b). Even so, the power transfer function dom-
inated by FC-SWM shows a 5× slope improvement over
solely FWM, further confirming the fifth-order nature of
FC-SWM.

3.3. Phase-sensitive interaction between
FC-SWM and FWM

It is observed from Fig. 2(a) and (b) that, with the utilized
experimental parameters, FC-SWM and FWM coexist and
have comparative magnitudes, which allows us to explore
the interplay between six- and four-wave mixing in sili-
con. As illustrated in Eqs. (6) and (7), the combinational
effect of FC-SWM and FWM produces an overall wave-
mixing strength that is asymmetrical for positive and nega-
tive input laser detunings. Since the waveguide dispersion
is neglected in the derivation, such unconventional asym-
metry could arises from the interplay between FC-SWM
and FWM [30], [31]. The same dynamics is observed

Figure 4 Comparative detuning line-shape symmetries and asymmetries for different nonlinear constituents, noted in Table 1. The
open circles are from numerical NLSE simulation and the solid lines are from analytical calculations, based on parameters used from
Fig. 2 at 11.7 W. (a) Solely Kerr and TPA without free-carrier dynamics, with negligible detuning dependences. (b) Kerr and FCD
constituents, with symmetric line shape. (c) TPA and FCA constituents, with symmetric line shape. (d) FCD and FCA constituents,
with symmetric line shape. (e) Kerr and FCA constituents, with line-shape asymmetry. (f) TPA and FCD constituents, with line-shape
asymmetry. Note that the numerical results of the sideband powers close to zero detuning are subtracted due to the overlap with the
pump spectra line width itself.
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Figure 5 Wave-mixing evolution via the phase-sensitive superposition of FC-SWM and FWM. (a) Experimentally measured wave-
mixing sideband powers as a function of input laser detuning, under two different input pulse peak powers: 11.7 W (green) and 2.1
W (cyan). The laser scanning resolution is 2.5 GHz. (b) Numerical (open circles) and analytical (solid lines) calculated wave-mixing
sideband power evolution, corresponding to a 11.7 W and a 2.1 W pulse. (c) Calculated false-color image of overall wave-mixing
sideband powers while sweeping input pulse powers from 1 W to 12 W. The sideband powers are normalized to the maximum value
for each input pulse power.

experimentally in Fig. 1(d); for two opposite detuning val-
ues ±0.28 THz, the generated power of sidebands s1 and s2
has an appreciable difference of 1.6 dB. More generally, as
observed in Fig. 2(a), the recorded sideband powers exhibit
as an apparently asymmetric line shape as the wavelength
detunes from −0.70 THz to 0.70 THz.

To elucidate such unconventional sideband evolutions
and probe the interaction between different nonlinear wave-
mixing processes, we tailored Eqs. (6) and (7) with different
sets of nonlinear process combinations. As summarized in
Table 1, for TPA and FCD, Kerr, and FCA, we indeed
obtain unequal wave-mixing intensity with ±b detuning;
while the other combinations all generate symmetric side-
band powers. Importantly, comparing Table 1 and Eq. (3),
we conclude that the breaking of wave-mixing symmetry
can only originate from the interplay between the nonlinear
amplitude modulations and the nonlinear phase modula-
tions that have a phase offset of π/2 (i.e., between TPA
and FCD, Kerr, and FCA). Figure 4 shows the analytically
calculated wave-mixing sideband powers as a function of
detuning; the features predicted in Table 1 are clearly illus-
trated. To further confirm our analysis, Fig. 4 also presents

the numerically simulated sideband powers under different
nonlinear effects in Eqs. (1) and (2), which agree very well
with the analytical results.

Moreover, we find that the phase-sensitive interaction
between FC-SWM and FWM significantly modifies the
overall sideband generation and opens up new possibili-
ties to manipulate the multi-wave energy exchange in sili-
con. As indicated in Eqs. (6) and (7), the contributions of
FC-SWM and FWM are intertwined within the functions
H , M , J0, and J1, which have different monotonicities.
Hence, the change of each effect can result in variation
of the overall sideband power evolution in a nonexplicit
fashion. To demonstrate this, Fig. 5(a) and (b) show the
measured and calculated sideband power evolution for two
input pulse peak powers. Particularly, for the 11.7 W pulses,
FC-SWM dominates FWM such that the sideband evolu-
tion approximately follows the 1/b dependence featured by
FC-SWM, as discussed above in Fig. 2(a) and (b). On the
other hand, when the input pulse power is decreased to 2.1
W, FC-SWM is subjected to more degradation due to its
higher dependence on the pump power. Consequently, at
this power level, FWM now competes with FC-SWM and
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results in approximate independence of sideband power on
detuning b, as shown in Fig. 5(a) and (b). More generally,
Fig. 5(c) shows the calculated sideband power evolution
while sweeping the input pulse power. We observe that as
the pulse power increases from 1 W to 12 W, the side-
band evolution changes significantly, providing abundant
and readily accessible power transfer functions. Such cou-
pled and controllable sideband evolutions can be applica-
ble for all-optical signal processing applications such as
all-optical signal regeneration and frequency conversion.

4. Conclusion

Here we report the original demonstrations and analysis
of Drude free-carrier plasma-induced six-wave mixing in
silicon nanowire waveguides. Unique features of FC-SWM
have been experimentally observed and discussed in depth.
First, the non-dispersion-induced inverse dependence of
FC-SWM frequency conversion on the input laser detun-
ing is observed, with FC-SWM sideband power rapidly
increasing by 3.0 dB within a 0.3 THz detuning window.
Second, the strong dependence of the FC-SWM on input
pump powers is illustrated. Third, the phase-sensitive in-
teraction between FC-SWM and FWM is demonstrated for
the first time, giving rise to the asymmetric line shape of
sideband power evolution as a function of laser detuning.
These observations not only advance our understanding
of free-carrier nonlinear dynamics in the multiple-wave
regime, but also open up new possibilities for applications
based on wave mixing, such as on-chip spectral broadening
and all-optical signal processing. Finally, the processes and
phenomena demonstrated here can potentially be observed
in other physical systems involving plasma nonlinearity,
such as gas photo-ionization in hollow-core photonic crys-
tal fibers [32]–[34] and light–plasma interactions in semi-
conductor photonic crystals [35].

Supporting Information

Additional supporting information may be found in the online ver-
sion of this article at the publisher’s website.
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I. Configuration of the experimental measurements 

In this study we examine six-wave mixing caused by the effective (5) free-carrier plasma nonlinear 
dynamics. To demonstrate six-wave mixing, the most intuitive way is to apply five different input 
frequencies and reveal the non-degenerate wave mixing sidebands. However, as discussed in the main 
text, FC-SWM and FWM concurrently takes place in silicon nanowire; and a six-wave mixing process 
can always be decomposed into two cascaded four-wave mixing processes [R1]. In other words, the 
sideband frequencies generated by FC-SWM are always overlapped with cascaded FWMs – thus we 
cannot distinguish them simply by sideband frequencies [R2]. On such basis, in this Letter we utilized a 
two-laser experiment configuration to study degenerate FWM and degenerate FC-SWM processes (as 
shown in Fig. S1), and unambiguously demonstrate the existence of FC-SWM by discovering the regime 
where FC-SWM sufficiently prevails over FWM, caused intrinsically by the direct detuning dependence 
of FC-SWM, as shown in Fig. 2 of the main text. Furthermore, such compact and efficient experiment 
configuration also greatly simplifies the theoretical derivation towards the concise expressions of wave 
mixing sideband coefficients shown in Eq. (5-7) of the main text, which greatly facilitates our analysis 
of this nonlinear phenomenon.  
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FIG. S1. Schematics of the experiment setup. FPC: fiber polarization controller, IM: intensity 
modulator; PPG: pulse-pattern generator; EDFA: erbium-doped fiber amplifier; BPF: band-pass 
filtering; VOA: variable optical attenuator; PD: photon diode; OSC: Oscilloscope; OSA: optical 
spectrum analyzer; and DAQ: data acquisition.  
II. Derivation of the nonlinear modulation coefficient 

The nonlinear field dynamics in the silicon nanowire is described by the nonlinear Schrödinger 
equation (NLSE) coupled with the rate equation of the intra-nanowire free-carrier density Nc(z, t), given 
by [R3-R5]:  

 
2 3 232

2 3
0

= ( ) ( )2 6 2 2
l TPAeff c

E E Ei E i E E i N Ez t t A
                                     (S1) 

                            4
20 0 0

( , )( , ) ( , )2
t cTPAc

c

N zN z t E z dA hv
  

                                                    (S2) 
In Eq. (S1-S2), E is the slowly-varying envelope of the intra-nanowire electromagnetic fields, βn is the 
nth order dispersion, l is the linear loss, γeff is the effective Kerr nonlinear coefficient, βTPA is the 
degenerate two-photon absorption (TPA) coefficient, δ and σ is the free-carrier dispersion (FCD) and 
free-carrier absorption (FCA) coefficient respectively, A0 is the effective mode area, and τc is the free-
carrier lifetime. Nc(z, t) is the free-carrier density with explicit z- and t-dependences shown for clarity. 
To study the wave mixing processes, we assume that, without loss of generality, an incident light field 
onto the silicon nanowire as 1 1 2 2cos( ) cos( )E A t A t   . To facilitate comparison with our measurements, 
here A1 is a quasi-square pulse envelope with pulsewidth at half-maximum equal to To, and 1 2A A . 



S-3 
 

Examining the evolution of the overall input fields and neglecting the small nanowire dispersion, the 
nonlinear modulation term (NM) experienced by the input fields in the nanowire can be described by:  

                                 2 4
2 00 0 0

( )exp 2 2
tTPA TPAeff

L iNM L i E E dtA A hv
                                             (S3) 

Here L is the nanowire length. In Eq. (S3) we neglect free-carrier recombination relaxation since it is 
much slower (~ ns to 250 ps) than the beating oscillations considered in our study (  -1

1 22 -c    ). 
With the slow-varying envelope approximation [R1], we can neglect those fast oscillations at 
frequencies 1 , 2 , as well as their summation and multiples. Hence one obtains: 

                                        22 1 1 2 1 2cos2
AE A A t t                                                      (S4) 

                                     
4 4 4 3 3

1 1 1 2 1 2
4 3

1 1 2 1 2

cos ( ) 4 cos ( )cos( )
3 3 cos( )8 2

E A t A A t t
A A A t t

  
 

 
                                              (S5) 

In the above derivation we use the condition that 1 2A A , relevant for our measurements, and neglect 
the terms containing 2

2A . Considering that NM eventually applies on the high power pulse field 
1 1cos( )A t , Eq. (S4) represents the four-wave mixing process (3)( 1 2 1 1 22 ; , ,     ) and Eq. (5) 

represents the six-wave mixing process (5)
FC  ( 1 2 1 1 1 1 22 ; , , , ,        ). It is seen that under our 

experimental configuration, particular wave interactions are different for four- and six-wave mixing but 
both result in nonlinear modulation of frequency 1 2  . Substituting Eq. (S4-S5) into Eq. (S3), we 
obtain:  
      42 3

1 01 1 21 2 2
0 0 0

3( ) 3exp cos( ) sin( )2 2 2 8 2
TPA TPAeff

A TA i L A ANM L i A A bt btA A hv b
                                (S6) 

where 1 2b     . To focus on the wave mixing processes, we eliminate the constant modulation terms 
in Eq. (S6) and keep only the oscillation terms to obtain:  
                                                 ( )exp cos( ) sin( )iD ANM iG P bt btb

                                          (S7) 
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Here 1 2 effA AG L  , 1
1 2 0(2 )TPAAP AL A    , 3 1

1
2

0 023 )(4TPAD LA A hvA    , 1A D  . With our 
experimental parameters, we find that G, P, D, A are each substantially smaller than 1, such that Eq. (S3) 
is simplified to:   
                                exp( cos( ) sin( )) (1 cos( )) (1 sin( ))iD ANM iG bt bt P bt btb b                            (S8) 
Eq. (S8) can be further rearranged into the following form: 
                                                  exp sin( ) 1 cos( )NM iH bt M bt                                            (S9) 
where  2 2H D b G  ,  2 2M A b P  ,with  arctan /Gb D  , π/2 ≤θ < π, and arctan( )A Pb   , 
π/2 ≤ ψ < π. The values of θ and ψ are determined by the signs of G, P, D, and A. Using the Bessel 
expansion and Euler’s formula, we obtain: 

                                          1

1
11 2

inbt in ibt i ibt i
n

n
NM J H e M e e     


         .                                 (S10) 

Here Jn is the nth order Bessel function. In Eq. (S10) we note that the only possible values of n are -1, 0, 
and 1 because phase-matching condition cannot be satisfied for higher eigenfrequencies as confirmed in 
in the measurements. Subsequently, the nonlinear modulation terms at opposite detunings ±b are:   

                                                               0 1
1
2

i i
bNM MJ e J e                                                        (S11) 

                                                               0 1
1
2

i i
bNM MJ e J e                                                       (S12) 

In the above derivation we used 1 1J J    . 
III. Deriving the interactions between different nonlinear six-wave and four-wave mixing effects 

Below is the detailed derivation of Table I in the main text, based on Eq. (S11-S12).  
i. when only Kerr and TPA are applied,  A=0, D=0, 2  ,    , 0 12bNM MJ iJ   ;

0 12bNM MJ iJ    . 
ii. when only TPA and FCA are applied,  D=0, G=0, 2i

bNM Me  ; 2i
bNM Me   . 

iii. when only Kerr and FCD are applied,  A=0, P=0, 1
i

bNM J e  ; 1
i

bNM J e    . 
iv. when only FCA and FCD are applied,  G=0, P=0,   , 3 2  , 0 12bNM iMJ J  ;

0 12bNM MJ J    . 
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v. when only Kerr and FCA are applied,  P=0, D=0, 2  , 3 2  , 0 12bNM iMJ iJ  ;
0 12bNM iMJ iJ    . 

vi. when only FCD and TPA are applied,  G=0, A=0,   ,   , 0 12bNM MJ J   ;
0 12bNM MJ J    . 

IV. Comparing the analytical results with experimental and numerical results 
To connect Eq. (S11-S12) with the experimental results shown in Fig. 1 in the main text, the wave 

mixing sideband s1 generated at 1 – b corresponds to NMb [S5], and its power can be written as: 

                                                             
2

1 0 1 1
1
2

i i
sP MJ e J e A                                                          (S13) 

Similarly, the wave mixing sideband s2 generated at 1 + b corresponds to NM-b , and its power can be 
written as: 
                                                           

2
2 0 1 1

1
2

i i
sP MJ e J e A                                                          (S14) 

In deriving of the above equations, we neglected nanowire dispersion and the time-independent 
nonlinear phase-shift induced by Kerr SPM, XPM, and FCD, which can in turn cause phase mismatch 
and reduce the sideband generation in the wave mixing process. However, we note that: i) the nanowire 
dispersion is comparatively negligibly small in our study; and ii) the overall phase mismatch caused by 
the nonlinear phase shift is independent of detuning. Therefore, there is only a constant discrepancy (~ 4 
dB) between the sideband powers predicted by Eq. (S13-S14) and the experimental sideband 
measurements (and numerical simulated sideband powers). Correcting for this constant offset, the 
analytical results are nicely in line with simulations and experiments, as shown in Fig. 2 and Fig. 4 of 
the main text. Also, Fig.  in the main text compares the numerical and analytical results induced by each 
combination of nonlinear wave mixing effects as listed in Table I in the main text, all exhibiting 
favorable agreement with each other.  
V. Coupled-mode equations containing FC-SWM 

Here we derive the coupled-mode equations of wave mixing in the presence of FC-SWM, based on 
the configuration adopted in our experiment [R6-R8]. Substituting the overall intra-nanowire field 

1 2 3 1 1 2 2 3 3cos( ) cos( ) cos( )E E E E A t A t A t         into Eq. (S1-S2) and following the derivation 
of Eq. (S6), we obtain: 
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2
1 1 2 1 3

0
4 33

1 0 1 31 2
2
0 0

cos( ) cos( )2 2
3 3( ) 3 sin( ) sin( )2 8 2 2

TPAeff

TPA

Ai A A bt A A btAdE EA T A Ai A A dzbt btA hv b b L


  

                      
                     (S15) 

Expanding Eq. (S15) and gathering the terms with eigenfrequency 1 , 2  and 3 1 2    , we have: 
                                  2 41 1 1 0 12

0 0 0

3( )
2 16

TPA TPAeff
dA ii A A T Adz A A hv
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0 0 0

23( )22 16
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  2 42 2 22 4 1 1 1 223 1 3 1 2 0 1 32
0 0 0

2 23( )22 16
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TPA TPAeff
A A e A A edA ii A A A A T A Adz A A hv b b

    
                       

                     

(S18) 
Here, in the derivation, we use 1 2 3A A A  . Qualitatively, the pulse field 1E  experiences self-induced 
Kerr SPM, TPA, FCA, and FCD. The continuous-wave field 2E  mainly experiences Kerr XPM and the 
cross-induced TPA, FCA, and FCD from 1E . The sideband field 3E  experiences XPM and the cross-
induced TPA, FCA, and FCD from 1E . Additionally it acquires energy from 1E  and 2E  via FWM (4th 
term in the RHS of Eq. (S18)) and FC-SWM (last term in the RHS of Eq. (S18)). The coupled-mode 
equation model illustrates the evolution of each wave participating in the wave mixing and, specifically 
it enables the modeling of the wave mixing phase matching dynamics, as described in the next Section. 
VI. Phase matching consideration of FC-SWM 

It can be seen from Eq. (S5) that the phase-matching condition for FC-SWM is 2 32        , 
where i  is the propagation constant at wavelength i . It is noted that although FC-SWM is a six-wave 
mixing processes, its phase-matching condition is identical with Kerr FWM, since we utilized the 
bichromatic laser input to study the degenerate FC-SWM ((5)( 1 2 1 1 1 1 22 ; , , , ,        )) and FWM 
((3)( 1 2 1 1 22 ; , ,     ))  [R9-R10]. From Eq. (S16-S18), the phase mismatch can be written as: 

                                              2
2 3 12 2 eff A                                                      (S19) 
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where   denotes dispersion induced linear phase mismatch and 2
12 eff A denotes nonlinear phase 

mismatch caused by Kerr phase modulation. We emphasize that, as seen from Eq. (S16-S18), FCD 
causes large but identical nonlinear phase shift to all the intra-nanowire fields (as confirmed by the 
prominent spectral blue-shift and broadening of the pulse, c.w., and sideband spectrum shown in Fig. 
1(b) of the main text), such that FCD does not contribute to the overall phase mismatch [R4, R11-R12]. 
Moreover, Fig. S2 shows the evolution of ×L  and the analytically calculated sideband power as the 
function of input laser wavelength detuning. We see that the peak value of ×L is small (~ 0.34π), 
implying that the experimentally demonstrated wave mixing operates close to phase matching condition. 
In addition, for the experimental nanowire as noted in the main text, the influence of the detuning 
dependent phase mismatch caused by dispersion (  L ~ 0.0041 ) is substantially weaker than the 
intrinsic 1/b scaling of FC-SWM. 
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FIG. S2. Evolution of phase mismatch (left y-axis) and the analytically calculated normalized sideband 
power (right y-axis) as a function of input laser frequency detuning. 
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