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Abstract: We present the design and experimental comparison of 
femtogram L3-nanobeam photonic crystal cavities for optomechanical 
studies. Two symmetric nanobeams are created by placing three air slots in 
a silicon photonic crystal slab where three holes are removed. The 
nanobeams’ mechanical frequencies are higher than 600 MHz with 
ultrasmall effective modal masses at approximately 20 femtograms. The 
optical quality factor (Q) is optimized up to 53,000. The optical and 
mechanical modes are dispersively coupled with a vacuum optomechanical 

coupling rate g0/2 exceeding 200 kHz. The anchor-loss-limited mechanical 
Q of the differential beam mode is evaluated to be greater than 10,000 for 
structures with ideally symmetric beams. The influence of variations on the 
air slot width and position is also investigated. The devices can be used as 
ultrasensitive sensors of mass, force, and displacement. 
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OCIS codes: (220.4880) Optomechanics; (230.5750) Resonators; (230.5298) Photonic crystals. 
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1. Introduction 

Cavity optomechanics, a subject studying the coherent interaction of optical and mechanical 
degrees of freedom of various optical cavities, has been a recent research focus [1–4]. Its 
applications include laser cooling of mesoscopic systems to their motional quantum 
mechanical ground state [5–13], photon–phonon translation and storage of light pulses [14–
16], and quantum precision measurements of microwave and optical photons [17–19]. 
Photonic crystals (PhC) are a versatile cavity platform widely used for light–matter and light–
structure interactions, e.g., cavity quantum electrodynamics [20,21], nonlinear optics [22–24], 
and cavity optomechanics [25,26]. Enabled by large optical gradient forces [27–29], high-Q 
PhC cavities exhibit strong optomechanical interactions in both one-dimensional (1D) [30] 
and two-dimensional (2D) [31–33] geometries. 

In this paper we investigate for the first time the theoretical design of a “nanobeam-in-
cavity” and compare the numerical simulation with our recent experimental observations [34]. 
A nanobeam mechanical resonator is embedded within a PhC nanocavity to obtain a small 
modal mass and large optomechanical coupling. The mechanical modes are localized in a 
volume smaller than that of the optical modes, with femtogram masses. The mechanical 
properties are readily and deterministically tuned, and compared with our measurements in 
the presence of fabrication imperfections [35,36]. The strong optical scattering from the 
embedded nanobeams requires reengineering of the photonic band structure and fine tuning of 
the radiation light cone to optimize the optical Q, as supported by our experimental 
observations. We further analyze the optomechanical coupling for several nanobeam-in-

cavity geometries, where the coupling rate gom/2 ranging from 4.8 to 15.5 GHz/nm (vacuum 

optomechanical coupling rate g0/2 of 124.1 kHz to 326.6 kHz) is found in theory and 
experiment. 

2. Optical design: band structure and radiation suppression 

Nanobeams are widely used to build high-frequency nanomechanical resonators [37–39]. As 
shown in Fig. 1, our nanobeam-in-cavity consists of two nanobeams embedded in a PhC slab 
where three air slots are placed in the region of three missing holes of a triangular lattice. 
Since a PhC cavity based on three missing air holes in an otherwise perfect triangular lattice 
is usually referred to as an L3 cavity [40,41], we name ours an “L3-nanobeam cavity.” The 
nanobeams introduce strong perturbation to the original L3 cavity, resulting in significant 
modification of the optical characteristics [42]: First, the effective refractive index in the 
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cavity region is reduced by the slots, which shifts the cavity resonance away from the 
bandgap and makes it difficult to localize the optical energy in a small volume; Second, the 
sharp edges of the slots result in a large radiation energy leakage [40]. Careful designs are 
thus required to restore a high optical Q after introducing the slots. We overcome the adverse 
effects and optimize the cavity with the following strategies: First, the y distance of wwg is 
increased, i.e., made wider than the width of a single-missing-row (W1) waveguide, which 
compensates the effect of reduced effective refractive index. The holes in the cavity row are 
enlarged accordingly to provide a reliable in-plane field confinement in the x direction. The 
holes surrounding the cavity are shifted to tune the optical field profile such that the vertical 
radiation scattering is minimized [40]. Numerical modeling proved the effectiveness of the 
above implementations and that the optical field of this L3-nanobeam cavity is indeed 
different from that of a regular L3 cavity [40]. For simplicity, it is straightforward to construct 
symmetric structures with wb = wb1 = wb2 and was = was1 = was2 = was3. 

 

Fig. 1. Geometry of the L3-nanobeam cavity. (a) Overview of the device. (b) Zoom-in of the 
beam region. a is the lattice constant of the triangular PhC; sx1, sx2, and sx3 are the hole offsets 
in the x direction; sy is the hole offset in the y direction; wb1 and wb2 are beam widths; was1, was2, 
and was3 are slot widths. (c) Scanning electron micrograph of a fabricated beam-cavity. 

The intrinsic properties of different regions of the L3-nanobeam structures are studied by 
band structure analysis with MPB [43], a vectorial eigensolver of Maxwell’s equations with 
periodic boundary conditions computed by preconditioned conjugate-gradient minimization 
of the block Rayleigh quotient in a planewave basis. It is well known that the localized modes 
of a regular L3 cavity can be viewed as Fabry–Pérot modes from a guided TE-like y-odd band 

of a W1 waveguide. (Note that here “y-odd” refers to the odd (phase = 1) mirror symmetry 
with respect to the y = 0 plane for the vector fields.) Similarly, the optical modes of the L3-
nanobeam cavity are also based on a slotted waveguide band. Figure 2(a) shows the band 
structure of the TE-like modes for the PhC lattice, where a quasicomplete bandgap covers the 
C band and provides confinement for the optical field in the y direction. Figure 2(b) shows the 
band structure of the slotted waveguide for the TE-like y-odd waveguide modes, where solid 
and dashed lines correspond to (was, wb) = (60 nm, 80 nm) and (was, wb) = (60 nm, 60 nm), 

respectively. The waveguide width wwg is selected to be 1.35 3a , allowing the slot 

waveguide band to be well located at the center of the PhC bandgap. Figure 2(c) shows the 
mode-edge frequency versus the waveguide width wwg. The gray regions indicate the slab 
mode continua of the PhC lattice. A regular W1 waveguide has a propagating TE-like y-odd 
band inside the PhC bandgap; however, when the slots are introduced, the slotted W1 
waveguide band shifts up, pushing its bandedge into the upper PhC slab continuum. By 

increasing wwg from 3a  to 1.35 3a , the waveguide band moves back to the center of the 

bandgap and the optical field is guided again by the nanobeam PhC waveguide [Fig. 2(d) and 
2(e)]. The Ey field is highly localized inside the slots, similar to that of other air-slot PhC 
waveguides [44]. The intensity |Ey|

2
 across the waveguide is shown in Fig. 2(f), where the 

origin (y = 0) denotes the center of the middle slot. The boundary conditions result in sharp 
slopes at the air–silicon interfaces. The three peaks correspond to the highly concentrated 
field inside the three slots. The center peak is weaker than the outer ones, providing an 
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asymmetry across the silicon nanobeams, a prerequisite for taking advantage of the gradient 
optical force for related beam motions [27]. 

 

Fig. 2. (a) TE-like bands of a PhC slab with a triangular lattice of air holes where lattice 
constant a = 430 nm, hole radius r = 0.29a, refractive index of silicon nsi = 3.48, and silicon 
slab thickness h = 220 nm. (b) TE-like y-odd waveguide band for the slotted W1.35 waveguide 

with wwg = 1.35 3 a , (was, wb) = (60 nm, 80 nm) (red solid line) and (was, wb) = (60 nm, 60 

nm) (red dashed line). Red circles indicate the bandedges. (c) Waveguide bandedge frequency 
versus the waveguide width wwg. The gray regions indicate the PhC slab mode continua. The 
inset illustrates the geometry. (d),(e) Field distribution of Ey at the bandedge as indicated by 
the upper and lower red circles in (b), respectively. (f) Ey intensity profile along the y direction, 
i.e., perpendicular to the slots. The solid line is obtained from (d) and the dashed from (e), cut 
from center of the hot optical spots. 

 

Fig. 3. (a) Band structure of the TE-like y-odd band for the “mirror” waveguide with hole 
radius rwg = 160 nm. (b) Waveguide bandedge frequency versus the waveguide hole radius rwg. 
The inset illustrates the geometry. 

Next, to create a cavity mode, we confine the field in the x direction by replacing the 
infinitely long slots with ones of the planned beam length, surrounded by “mirror” air holes 
[45]. Figure 3(a) shows the TE-like y-odd guided band for the “mirror” waveguide with hole 
radius rwg = 160 nm. Figure 3(b) shows that the edge of this guided band is pushed up by 
using a larger radius. Comparing Fig. 3(a) and Fig. 2(b), we find that the band of the “mirror” 
waveguide sits well above that of the slot waveguide. Their zero overlap in frequency range is 
important for suppressing the optical energy leakage via the “mirror” waveguide. Based on 
the above guidelines, a selected set of geometrical parameters are: (a, r, h, wwg, rwg) = (430 
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nm, 0.29a, 220 nm, W1.35, 160 nm), which are used for further optimization of the cavity 
mode. 

 

Fig. 4. Optimization process for the cavity with (was, wb) = (60 nm, 80 nm) by tuning hole 
positions of sx1, sx2, sx3, and sy respectively in series, as shown in panels (a) to (d). For an air 
slot length Ls of 1.8a, the maximum optical Q of 1.95 × 104 is achieved with (sx1, sx2, sx3, sy) = 

(0.18a, 0.06a, 0.22a, 0.15a) [Design 1]. With a similar optimization process, cavities with 
(was, wb) = (60 nm, 60 nm) achieve a higher optical Q of 5.22 × 104 with (Ls, sx1, sx2, sx3, sy) = 

(1.9a, 0.3a, 0.02a, 0.1a, 0) [Design 2]. Solid lines indicate the optical Q, while the dashed 
lines indicate the normalized resonant frequency. The red dot in Panel (d) indicates the 
measured unloaded optical Q of the nanobeam cavity based on Design 1 from experiments. 

From the band structure design and calculations, we have created a localized cavity made 
by ensuring the in-plane modal confinement. In what follows we use finite-difference time-
domain (FDTD) method to simulate the L3-nanobeam cavities [46] and optimize their optical 
Q by shifting the surrounding holes iteratively [40]. This will further suppress the excess 
radiation loss caused by the sharp transitions at cavity edges. A spatial resolution of 21.5 nm 
is used in combination with subpixel averaging. The starting optical Q for nanobeams with 
(was, wb, Ls) = (60 nm, 80 nm, 1.8a) is around 2.0 × 10

3
. As shown in Fig. 4(a), shifting the 

adjacent holes towards the nanobeams with sx1 = 0.18a increases the optical Q to 7.3 × 10
3
. 

Further tuning of sx2, sx3, and sy leads to an optical Q of 1.95 × 10
4
. This optimized geometry 

with hole offsets (sx1, sx2, sx3, sy) = (0.18a, 0.06a, 0.22a, 0.15a) will be subsequently 
referred to as “Design 1.” It is worth noting that sy is not trivial in this L3-nanobeam cavity 

design: a variation of sy from 0 to 0.15a actually doubles the optical Q. Based on Design 1, 
we fabricated the devices [34] and observed experimental optical Q values around 10

4
. The 

highest experimental loaded optical Q is 1.5 × 10
4
 and the corresponding unloaded Q is 1.7 × 

10
4
 as inferred from the normalized on-resonance transmission of 0.015. This experimental 

value is marked in Fig. 4(d) for comparison and its deviation from the simulation is due to 
surface roughness scattering in the fabricated samples. Following a similar optimization 
process, cavities with thinner nanobeams (was, wb, Ls) = (60 nm, 60 nm, 1.9a) exhibit an even 

higher optical Q of 5.22 × 10
4
 with hole offsets (sx1, sx2, sx3, sy) = (0.3a, 0.02a, 0.1a, 0), 

which will be subsequently referred to as “Design 2”. We note that this is over two orders-of-
magnitude improvement over conventional W1 L3-nanobeam cavities without tuning the wwg 
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nor the cavity parameters. These two designs with different beam geometries demonstrate the 
achievable high optical Q of such L3-nanobeam cavities. 

To further investigate the cavity mode, the modal distributions of the Ey component for 
different Q values are analyzed using spatial Fourier transform (FT) [40] as shown in Fig. 5. 
The fields have an odd symmetry in the x direction, leading to a negligible portion inside the 

radiation light cone as indicated by the red circles [47]. Spatial components at Kx 0 of the 
leaky fields are thus greatly suppressed. From Fig. 5(d) to 5(f), the leaky components inside 
the light cone are reduced as the optical Q increases. This indicates that the enhanced optical 
Q during the optimization process results not only from a smoother field profile but also from 
a more delocalized field [see Fig. 5(a)–5(c)]. The optical modal volumes for the two designs 

in Fig. 5(b) and 5(c) are 0.079 µm
3
 and 0.12 µm

3
, or 0.021 (0/nair)

3
 and 0.032 (0/nair)

3
 

respectively, where 0 is the free-space resonant wavelength and nair is the refractive index of 
air. The small optical modal volumes compared to other high-Q PhC cavities [40] are actually 
a result of predominantly localized modal energy inside the air slots. 

 

Fig. 5. (a)(c) Modal distribution of the Ey field. (d)(f) Corresponding spatial Fourier 
transformation (FT) for cavities with increasing optical Q. (a) and (d) correspond to (Ls, sx1) = 

(1.8a, 0.18a) in Fig. 4(a) with an optical Q of 7.3 × 103. (b) and (e) correspond to the 
optimized geometry Design 1. (c) and (f) correspond to the optimized geometry Design 2. 

3. Mechanical design: eigenmodes and elastic radiation leakage 

Doubly clamped beams have been widely used to build mechanical resonators [37–39]. Their 
high mechanical quality factor Qm and mechanical frequency fm are very useful for 
optomechanical applications, such as mass sensing, force sensing, and cooling/amplification 
of mechanical vibrations [48]. Depending on specific geometry, the frequency of the silicon 
nanobeams used here is around 1 GHz for the fundamental in-plane mode. The mechanical Q 
is affected by various loss mechanisms, e.g., clamping, thermoelastic damping, defect 
motions, and fluidic loss, etc. Among all the sources, clamping loss is usually a major loss 
channel for doubly clamped beams [39]. We compute the complex frequencies of mechanical 
modes of the L3-nanobeam cavity with the eigenvalue module in COMSOL 4.2a, a 
multiphysics solver based on a finite-element method [49]. The mechanical Q is then easily 
derived. The simulated geometry is identical to that used in the optical modeling. PMLs are 
applied at the boundaries of computation domain as an efficient impedance-matched 
nonphysical material for absorbing the radiating elastic waves without reflection [35,36,50]. 
Its implementation is based on complex coordinate scaling and has also been widely used in 
electromagnetic simulations [46]. The outer edges of the PMLs are fixed, and the thickness of 
the PMLs is set approximately to one elastic wavelength. As shown in Fig. 6(a), the minimum 
mesh element size is 2.4 nm and the mesh element growth rate is 1.3. The maximum mesh 
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element size is 20 nm in the beam region and 60 nm in other regions. The resolution of the 
curvature is 0.2. With these settings, every mesh element is thus at least 89 times smaller than 

the wavelengths of the transverse and longitudinal elastic waves, which are 9.66 m and 5.34 

m, respectively, in silicon at 1 GHz. The effectiveness of absorption by the PMLs is 
confirmed [36] by applying harmonic point forces to a photonic crystal membrane. 

 

Fig. 6. (a) Top view of the meshed structure used in the finite-element analysis. Fixed 
boundary conditions are applied outside the PMLs. The top and bottom surfaces are set as free 
boundaries. (b),(c) Normalized displacement field intensity (log scale) for the differential and 
common mode of Design 1, respectively. The insets are zoom-ins of the localized beam motion 
showing the displacements in linear scale. (d),(e) Corresponding von Mises stress field (log 
scale). (f) Radiating longitudinal elastic wave excited by the differential beam motion (Media 
1). (g) Radiating transverse wave excited by the common beam motion (Media 2). In (f) and 
(g), the displacement fields (linear scale) are overlaid with structural deformation. 

Figure 6 illustrates the in-plane mechanical modes of the nanobeams. For the L3-
nanobeam cavity, the two nanobeams are clamped to the pliant PhC slab and are thus 
mechanically coupled via the anchors, resulting in a differential and a common mode [30]. 
For Design 1, the computed complex frequencies fm of these eigenmodes are 9.61 × 10

8
 + 

i4.24 × 10
4
 Hz and 9.58 × 10

8
 + i9.94 × 10

6
 Hz, respectively. These compare well with an 

analytical estimate from  2

m b sf C E w L  [39], where the Young’s modulus E is 170 

GPa and the density  is 2330 kg/m
3
 for single-crystal silicon. C is a constant dependent on 

the mode and the beam clamping conditions at the ends of the beam. For the fundamental 
mode of a doubly clamped beam, C = 1.07 (for a Poisson’s ratio of 0.28) and the estimated 
frequency is 1.2 GHz for a beam with the dimensions of Design 1, which is slightly higher 
due to the finite mechanical compliance at the clamping points in the COMSOL 
computations. 

Furthermore, we note that the clamping-loss-limited mechanical Q for the differential 
mode (1.13 × 10

4
) is more than two orders of magnitude higher than that for the common 

mode (only 48). This significant Q difference can be explained by the mechanical 
displacement field and stress field as shown in Fig. 6(b)–6(g). Figure 6(b) and 6(c) are 
snapshots of the mechanical displacement intensity (log scale) for the differential and 

common modes. The displacement intensity is defined as      
2 2 2

Re Re Re  I u v w  

where u, v, and w are the displacements in the x, y and z directions, respectively. The 
difference resides not only in the beam motion but also in the radiating elastic waves 
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propagating in the PhC membrane: First, the amplitude of the radiating elastic waves for the 
differential mode is much smaller than that for the common mode, which directly explains the 
much higher Q of the differential mode than the common mode. Second, the radiation pattern 
for the common mode is similar to that produced by an in-plane harmonic point force driving 
the membrane in the y direction, while the radiation pattern for the differential mode is more 
interference-like. The loss channels are also different for these two modes, as illustrated by 
the stress fields in Fig. 6(d) and 6(e). The differential mode has much more localized field 
around the anchor region than the common mode. This is attributed to the fact that the two 
nanobeams pull the anchors in opposite directions for the differential mode, whereas they pull 
in the same direction for the common mode. The different forces induce the excited elastic 
waves with different phases for the two modes. Further inspection of the propagating elastic 
waves reveals their different nature. As shown in Fig. 6(f) and 6(g) (movies attached 
separately), the lattice holes move along the propagation direction for the differential mode, 
but move laterally with respect to the propagation direction for the common mode. This 
indicates that longitudinal waves are excited by the differential beam motion while transverse 
waves are excited by the common beam motion, which are in agreement with their different 
stress fields. The above investigation points to a greatly suppressed radiation loss for the 
differential mode. In parallel with the numerical designs, we measured the fabricated samples 
of Design 1 [34] which show mechanical Q values up to 1230 in vacuum [34]. The 
discrepancy in the Q values is mainly caused by fabrication imperfections, as illustrated in 
detail in Section 4. 

 

Fig. 7. (a) Transfer function obtained by forced frequencyresponse analysis. The phase, the 
transfer intensity, and its Lorentzian fit are plotted in blue dashed line, blue square markers, 
and red solid line, respectively. (b) Mechanical frequency fm and quality factor Qm versus the 
beam width for both the differential and common mode. Design 2 with wb = 60 nm is used 
here. 

Compared with Design 1, Design 2 employs thinner and longer nanobeams (wb, Ls) = (60 
nm, 1.9a). The simulated frequency is 693.9 MHz for the differential mechanical mode, about 
268 MHz lower than that of Design 1. The mechanical Q calculated from the complex 
frequency is 4.99 × 10

4
, more than four times higher than that of Design 1. Its transfer 

function between the force and displacement obtained from the frequencyresponse module 
in COMSOL 4.2a is shown in Fig. 7(a). A harmonic point force oscillating along the y 
direction is applied at the center of one beam, where the displacement amplitude is also 
monitored. The transfer intensity is the peak-normalized square of the displacement amplitude 
and a mechanical Q of 4.53 × 10

4
 is obtained by the Lorentzian fitting, which matches well 

(within 9%) with that from the complex-frequency computations. Similarly, the mechanical Q 
fitted from the transfer intensity of Design 1 is 1.09 × 10

4
, which also matches well (within 

4%) with that derived from the complex frequency (1.13 × 10
4
). The small discrepancies arise 

from the computational errors between different solvers. The -phase transition across the 
resonance also provides the mechanical Q from its maximum phase slope 2Qm/fm, which is 
essentially the same as the fitted value from transfer intensity. The transfer function method 
thus confirms the results obtained by the eigenvalue solver, albeit more computational 
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intensive. The above numerical results from two different designs have shown a large 
frequency tuning range and a strong dependence of mechanical Q on the beam width. Such 
dependence is exhibited in Fig. 7(b), where the beam width varies from 50 to 70 nm for 
Design 2. The mechanical frequencies change linearly with a slope of 9.45 MHz/nm and 9.91 
MHz/nm for the differential and common mode, respectively. The slight difference between 
their slopes is a result of varying mechanical coupling strength of the two beams: wider 
beams with larger elastic constant exert larger forces to the clamping points yielding stronger 
coupling and larger frequency difference. The L3-nanobeam cavities possess high frequencies 
for beam width wb less than 100 nm with a linear frequency dependence on wb according to fm 

 wb/Ls
2
. Furthermore, the mechanical Q increases from 1.72 × 10

4
 to 2.03 × 10

5
 as the beam 

width decreases from 70 to 50 nm. This is most likely due to the fact that beams with a 
smaller elastic constant and a smaller mass apply less force to the anchor region and that the 
stress field is more localized with a reduced beam cross-sectional area. These two factors lead 
to weaker residual loss (and thus higher Q) for the differential modes, while they do not affect 
much on the common mode Q. It should be noted that, even with the beam width variation, 
the optical Q values remain above 4.36 × 10

4
 as shown in Table 1. The overall resonant 

wavelength shift is about 19 nm, corresponding to an average of 0.95 nm per 1 nm increase in 
beam width. 

4. Dispersive optomechanical coupling and influence of beam asymmetry 

In the L3-nanobeam cavities, the optical and mechanical modes are mutually coupled. The 
optical gradient force created by the injected photons inside the cavity modifies the static 
positions and dynamic response of the mechanical beams, while the nanobeams vibration 
changes the phase of the optical cavity field producing a shift of the optical resonance. Both 
these effects are directly related to an optomechanical coupling rate, which characterizes the 
strength of optomechanical transductions [1,39]. The dispersive optomechanical coupling rate 

is defined as gom = do/dx where o is the angular frequency of the optical mode and x 
represents the amplitude of the mechanical motion. The corresponding vacuum 
optomechanical coupling rate is defined as g0 = gomxzm, where xzm is the zero-point motion of 

the mechanical mode given by 2zm eff mx m   with meff the effective modal mass and m 

the angular mechanical frequency (2fm). For regular cavities like microtoroids, microdisks, 
and Fabry–Pérot etalons, gom is easily determined from their characteristic lengths [1]. For 
cavities with complicated geometries like our L3-nanobeam cavities, gom is numerically 
calculated based on the unperturbed optical and mechanical fields by using first-order 
perturbed solutions of Maxwell’s equations with shifting boundaries [51,52]. Reference [30] 
provides an expression with consistent definitions of effective modal volume Vm and mass 
meff. Table 1 lists all the numerical results, where two features are worth noting: For different 
designs, the common mode always has slightly larger Vm and meff than the differential mode 

due to the mechanical mode delocalization as previously discussed. The gom/2 for the 
common mode is zero, since the effective refractive index of the cavity region does not 
change, to the first order, with the in-plane beams’ motion as dictated by symmetry. 
Properties for two example structures based on Design 2 in Fig. 7(b) are also included in 
Table 1. The structure with wb = 50 nm possesses the smallest effective mass, while the one 
with wb = 70 nm achieves the maximum optomechanical coupling rate. Due to their high 
optomechanical coupling and high mechanical Q, the differential modes can easily be 
detected by optical transduction in experiments [27,30,34]. 

Variations from fabrication: So far we have been focusing on symmetric structures with 
two identical beams. As both nanobeam width and slot width are below 100 nm, tiny 
variations from the ideal design can cause deviation from the expected properties. To evaluate 
such effects from, e.g., fabrication imperfections, the center slot of Design 1 is shifted 
laterally such that the two nanobeams now have different beam widths. Figure 8(a) shows that 
the higher-frequency mode (Mode 1) originates from the differential motion of the two beams 
and thus exhibits a higher mechanical Q than the lower-frequency mode (Mode 2) until the 
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center slot shift sc reaches 2.0 nm. Note that the mechanical Q of Mode 1 drops to around 
1,000 with sc = 0.25 nm, i.e., only a 0.5 nm difference in the beam width. It continues to drop 
to around 100, similarly to that of Mode 2 when sc is larger than 1.0 nm. The decoupling of 
the two beams with increased sc is also reflected by the beam frequencies, both of which 
exhibit a linear dependence for sc larger than 0.5 nm, each approaching the frequency of an 
individual beam. When sc reaches 3.0 nm, the frequency difference between the two branches 
is as large as 50.8 MHz. Figure 8(b)–8(e) show the displacement fields of the nanobeams for 
the two modes with sc = 0.25 nm (b,c) and sc = 3.0 nm (d,e). The coupled and uncoupled 
beam motions are evident, which is consistent with the frequency behavior shown in Fig. 
8(a). It should be noted that such a 3-nm lateral shift of center slot only slight changes the 
optical Q, but considerably alters the optomechanical coupling rates for both mechanical 
modes to approximately one half of that of the differential mode of Design 1 [see Table 1]. 

 

Fig. 8. (a) Mechanical frequency fm and quality factor Qm versus the center-slot displacement 
sc. Design 1 corresponds to the structure with sc = 0. Mode 1 originates from the differential 
mode, while Mode 2 originates from the common mode. (b)–(e) Zooms of the displacement 
fields of the nanobeams with sc = 0.25 nm (b,c) and sc = 3.0 nm (d,e). 

Table 1. Optomechanical properties of the L3-nanobeam cavities. Design 1 and Design 2 
refer to the two structures obtained in optical Q optimization for different beam 

geometries. 

Structurea 
0 

(nm) 
Qo Mode 

fm 
(MHz) 

Qm 
Vm 

(µm3) 
meff 
(fg) 

gom/2 
(GHz/nm) 

g0/2 
(kHz) 

Design 1 1541.7 1.95 × 104 
Diff. 961.2 1.13 × 104 0.011 26.5 11.3 204.6 

Com. 957.7 48 0.013 29.5 ~0 ~0 

Design 2 1553.2 5.22 × 104 
Diff. 693.9 4.99 × 104 0.0087 20.4 10.9 265.4 

Com. 696.1 38 0.0093 21.6 ~0 ~0 

Bm50nmD2 1543.1 4.36 × 104 
Diff. 595.9 2.03 × 105 0.0072 16.8 6.8 197.6 

Com. 595.5 71 0.0074 17.2 ~0 ~0 

Bm70nmD2 1562.2 5.32 × 104 
Diff. 785.0 1.72 × 104 0.0103 24.1 15.5 326.6 

Com. 792.0 57 0.0112 26.2 ~0 ~0 

Shft3nmD1 1540.8 1.94 × 104 
1 983.6 87 0.0063 14.7 6.1 145.6 

2 932.8 101 0.0058 13.4 4.8 124.1 

HiQ48nm 1586.2 1.02 × 105 
Diff. 574.9 1.17 × 105 0.0064 15.0 13.3 414.3 

Com. 575.3 79 0.0070 16.3 ~0 ~0 
aAll the structures are formed on silicon slabs with (a, r, h, wwg, rwg) = (430 nm, 0.29a, 220 nm, W1.35, 160 nm). 

Design 1 has (was, wb, Ls, sx1, sx2, sx3, sy) = (60 nm, 80 nm, 1.8a, 0.18a, 0.06a, 0.22a, 0.15a). Design 2 has (was, wb, 

Ls, sx1, sx2, sx3, sy) = (60 nm, 60 nm, 1.9a, 0.3a, 0.02a, 0.1a, 0). Bm50nmD2 and Bm70nmD2 are variations of 
Design 2 with beam width wb = 50 nm and 70 nm respectively, which correspond to the two extrema of wb in Fig. 
7(b). Shft3nmD1 is a variation of Design 1 with the center slot shifted by 3.0 nm, corresponding to the structure 

studied in Fig. 8(d)(e). HiQ48nm is an design with thinner beams and higher optical Q. It has (was, wb, Ls, sx1, sx2, sx3, 

sy) = (48 nm, 48 nm, 1.9a, 0.335a, 0.085a, 0.115a, 0). 

Table 1 summarizes the optomechanical properties of several typical devices numerically 
studied in this paper. The experimental results reported in Ref [34]. are in good agreement 
with the simulation predictions. Fabricated based on Design 1, the sample exhibits a loaded 
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optical Q of 1.0 × 10
4
, a mechanical frequency around 1 GHz, and a mechanical Q of 1230 in 

vacuum for the differential mode [34]. The common mode is not observed in the optical 
transduction measurement due to its small optomechanical coupling rate and a very low 
mechanical Q. The mode decoupling is also experimentally demonstrated in samples with 
intentional asymmetry: when the center slot is shifted laterally by 3.0 nm in the layout design, 
two mechanical peaks are observed with their mechanical Q values both around 55. It is 
evident that the differential mode of high mechanical Q benefits from the overall symmetry of 
the double beams. In our simulations here, the higher optical and mechanical Q values are 
obtained for ideally fabricated structures. In practice, however, the unavoidable structural 
imperfections during fabrication always deteriorate the device performance. Taking account 
of the loss to the coupling waveguides, the measured optical Q agrees very well with the 
simulated value. The optical Q should be further improved by implementation of Design 2 
where a 4-fold enhancement is expected. Actually, cavities with thinner beams generally 
possess higher optimized Q values due to the weaker perturbation. For example, a cavity (was, 

wb, Ls, sx1, sx2, sx3, sy) = (48 nm, 48 nm, 1.9a, 0.335a, 0.085a, 0.115a, 0), labeled as 
“HiQ48nm” in Table 1, exhibits an optical Q of 1.02 × 10

5
. On the mechanical part, we have 

observed a drop of mechanical Q from 1230 in vacuum to 580 in air [34]. It is clear that air 
damping plays a major role in ambient conditions. Under vacuum conditions, while the 
mechanical Q of devices reported by other groups [5,6,53] is limited by thermoelastic 
damping (TED), the TED-limited mechanical Q of our devices is estimated by COMSOL to 
be 7.08 × 10

4
 for the fundamental differential mode of Design 1 at room temperature [49]. 

Under cryogenic conditions, the Q value is even larger [5,6]. Thus, it is safe to exclude TED 
as the main loss mechanism. On the other hand, since the significant Q drop and mode 
decoupling of center-slot-shifted cavities are well predicted by analysis in Fig. 8, it is 
concluded that clamping loss should be the main loss mechanism for our devices measured in 
vacuum and the relatively low measured Q values are basically due to the uncontrollable 
fabrication imperfections. 

5. Conclusions 

We have numerically demonstrated a novel L3-nanobeam cavity, which consists of two 
mechanical nanobeams embedded in a PhC membrane where three holes are removed. 3D 
modeling with PMLs is employed for both optical and mechanical simulations. With ab initio 
calculation and comprehensive optimization, an optical Q up to 5.2 × 10

4
 is obtained. Designs 

with optical Q larger than 10
5
 are also achieved for cavities with reduced nanobeam widths. 

The fundamental in-plane mechanical modes of the high-optical-Q designs are also analyzed 
systematically. The mechanical frequencies approach 1 GHz and can easily be tuned by 
slightly varying the beam width while maintaining a high optical Q. The anchor-loss-limited 
mechanical Q for the differential mode is higher than 10

4
. The elastic radiation waves are 

shown to be transverse for the common mode and longitudinal for the differential mode. The 
effects on mode decoupling and mechanical Q due to the fabrication imperfections are also 
studied. The optical transduction efficiency of the differential mode is very high with vacuum 
optomechanical coupling rates over 200 kHz. In principle, an ultrahigh-Q optical cavity can 
be designed based on the mode-gap effect [54] by engineering the slotted waveguide band 
shown in Fig. 2. However, the mechanical frequency is expected to be much lower because of 
the much longer beams. Compared with the single-slot structure with ultrahigh optical Q [30–
32], our designs target at highly localized mechanical modes inside a PhC nanocavity and 
exhibit high mechanical frequencies with femtogram modal masses. Conceptually, the L3-
nanobeam cavities represent a new type of nano-optomechanical systems created by directly 
placing ultrasmall mechanical resonators into a photonic nanocavity. Such femtogram-mass, 
high-optical-Q, high-mechanical-Q structures are promising for optomechanical applications, 
especially in the ultrasensitive measurements involving mass, force, and displacement. 

#173437 - $15.00 USD Received 31 Jul 2012; revised 22 Oct 2012; accepted 1 Nov 2012; published 9 Nov 2012
(C) 2012 OSA 19 November 2012 / Vol. 20,  No. 24 / OPTICS EXPRESS  26497



Acknowledgments 

The authors thank Xingshng Luan, Di Wang, Jie Gao and James F. McMillan for helpful 
discussions on the optical and mechanical simulations. This work is supported by Defense 
Advanced Research Projects Agency (DAPPA) DSO with program manager Dr. J. R. Abo-
Shaeer under the ORCHID program (contract number C11L10831). M.P. acknowledges a 
Rubicon fellowship from The Netherlands Organization for Scientific Research 
(NOW)/Marie Curie Cofund Action. 

 

#173437 - $15.00 USD Received 31 Jul 2012; revised 22 Oct 2012; accepted 1 Nov 2012; published 9 Nov 2012
(C) 2012 OSA 19 November 2012 / Vol. 20,  No. 24 / OPTICS EXPRESS  26498




