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Abstract
Solitons, the distinct balance between nonlinearity and dispersion, provide a route toward ultrafast
electromagnetic pulse shaping, high-harmonic generation, real-time image processing, and RF photonic
communications. Here we uniquely explore and observe the spatio-temporal breather dynamics of optical soliton
crystals in frequency microcombs, examining spatial breathers, chaos transitions, and dynamical deterministic
switching – in nonlinear measurements and theory. To understand the breather solitons, we describe their
dynamical routes and two example transitional maps of the ensemble spatial breathers, with and without chaos
initiation. We elucidate the physical mechanisms of the breather dynamics in the soliton crystal microcombs, in
the interaction plane limit cycles and in the domain-wall understanding with parity symmetry breaking from
third-order dispersion. We present maps of the accessible nonlinear regions, the breather frequency dependences
on third-order dispersion and avoided-mode crossing strengths, and the transition between the collective
breather spatio-temporal states. Our range of measurements matches well with our first-principles theory and
nonlinear modeling. To image these soliton ensembles and their breathers, we further constructed panoramic
temporal imaging for simultaneous fast- and slow-axis two-dimensional mapping of the breathers. In the phase-
differential sampling, we present two-dimensional evolution maps of soliton crystal breathers, including with
defects, in both stable breathers and breathers with drift. Our fundamental studies contribute to the
understanding of nonlinear dynamics in soliton crystal complexes, their spatio-temporal dependences, and their
stability-existence zones.

Introduction
Self-organization and consequent collective dynamics

in coupled dynamical systems are central studies to
understand the fundamental mechanism in various fields
of our world, such as self-assembled materials and sys-
tems1, biological oscillators2, transport phenomenon3,
social networks4, and neural networks5. The appearance
of nonlinearity and dissipation have a significant impact
on the stability, dynamical behavior, and phase transi-
tions in these complex systems6–8. As a unique nonlinear

object, dissipative solitons9–16 are wave packets that
maintain a double balance of nonlinearity by dispersion
and dissipation by gain, providing an excellent route to
study nonlinear many-body interactions in a dissipative
system. Optical solitons in microresonators have recently
attracted tremendous research interest in fields ranging
from high-speed optical communications17, photonic
signal processing18, low-noise radiofrequency genera-
tion19, and coherent distance ranging20. The study of
soliton stability and dynamics, which is of essential
importance in promoting relevant applications, has
uncovered various states of a few solitons, including
intensity breather solitons21–24, soliton binding25–28, and
soliton diffusion29. In the aspect of collective patterns, the
soliton complexes can take the form of crystals in
microresonators, with the solitons as constituent
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elements in self-organized regular patterns analogous to
atomic crystals30–34. These states can spontaneously form
in the presence of a modulated background wave that
periodically traps solitons31,35. Perfect soliton crystals
(PSCs), PSCs with intensity breathers, and soliton crystals
with defects have also been observed and character-
ized31–33,35,36. Many-soliton interactions introduce a new
dimension in the control and understanding of soliton
states via the interplay between solitons. However, the
study of soliton dynamics has hitherto been primarily
confined to intensity breathing and slow changes such as
melting, recrystallization, and indirect switching of PSCs
in the power threshold and frequency detuning sub-
spaces35. While spatio-temporal dynamics has been
observed in mode-locked fiber resonators12, the breather
dynamics of soliton crystals remains largely unexplored.
The energy exchange between soliton tails with back-
ground waves in lattice structures has been theoretically
exploration37, hinting at the feasibility of collective
motions in soliton crystals. Furthermore, soliton crystals,
especially soliton crystals with defects, show advantages
in stability, spectral flexibility, and conversion efficiency38

compared to few solitons, and therefore is being widely
examined in recent years39–42. However, detailed
research on the deterministic generation and spatio-
temporal stability of soliton crystals with defects
remain elusive.
Here, we first examine the breather dynamics of optical

solitons in nonlinear 64.8 GHz frequency microcombs,
newly including spatially breathers in soliton crystals,
phase transitions with perfect crystals and chaotic wave-
forms. To unravel these nonlinear dynamics, secondly, we
demonstrate experimentally their spatio-temporal gen-
eration pathways via two example transitional maps of the
ensemble two-defect and single-defect breathers. With the
breathers at tens to hundreds of MHz, we observe tran-
sitions involving perfect soliton crystals, chaos, primary
comb lines, deterministic crystal N-switching from 46× to
48× the free spectral range, and stationary crystal states.
Third, we describe the physical mechanisms of the
breather spatial dynamics in soliton crystal microcombs,
initiated by a asymmetric soliton tail due to emitted dis-
persive wave and with energy exchange with a background
wave. Tracing a limit cycle in the interaction plane, we
introduce a collective figure-of-merit for the ensemble
motion, including an intracavity noise deviation that
increases with the velocity of the collective soliton crystal.
The motion of the dark and bright defect-solitons across
the soliton crystal is described via two domain-walls with
parity symmetry breaking assisted by third-order disper-
sion. Our nonlinear numerical modeling matches our
measurements, presenting maps of the experimentally
accessible nonlinear regions and the breather dependences
on the third-order dispersion and avoided-mode crossing

strengths. Fourth, we imaged these spatio-temporal soliton
complexes in real-time via panoramic temporal imaging,
watching simultaneously the fast-axis intracavity and slow-
axis roundtrip evolutions. With phase-differential sam-
pling, we present two-dimensional evolution maps of the
soliton crystals and their breathers, ranging from stable
breathers to drifting-breathers to chaotic solitons.

Results
Soliton crystals, breathers, and defects
Figure 1a–f show the selected patterns and dynamics of

soliton crystals, modeled from the nonlinear Lugiato-
Lefever equation for spontaneous pattern formation.
Perfect soliton crystals (SCs) are fully occupied solitons in
the spatial dimension, as shown in Fig. 1a. In soliton
crystals with defects, one may have vacancy, spatially-
moving solitons, or interstitial solitons. In Fig. 1b, we
illustrate the soliton crystal with one vacancy defect (1-
defect SC). Solitons near the defect may diffuse towards
the vacancy, subsequently occupying the previous vacancy
and leaving behind a new one. Distinct from conventional
intensity breathing23,33,43,44, this process cascades to form
a spatial breathing behavior as shown in Fig. 1c. Com-
pared to the random diffusion process, the spatial motion
of solitons in Fig. 1c is a lasting dynamical process with
several to hundreds of MHz repetition rate. The vacancies
can be understood as dark defects, while the interstitial
solitons can be interpreted as bright defects. These bright
defects translate with respect to the soliton crystal and
collide elastic-like with stationary solitons. This process
can also cascade to form a spatial breather shown in
Fig. 1d. Some solitons may chaotically participate in the
spatial dynamics while embedded in an ‘approximately
periodic’ structure as depicted in Fig. 1e. The chaotic
motion and irregular intensity fluctuations of solitons,
sometimes termed as chaotic solitons45–48, have been
reported in different platforms. In this work, we employ
the third-order dispersion term to strengthen the parity
symmetry breaking near the vacancy, enabling spatial
breathing and chaotic motions. Figure 1f illustrates an
example of the switching transition between soliton
crystal states of two different spacings a1 and a2, arising
from the thermal dependence of the avoided-mode
crossing which is detailed in Supplementary Note 1.

Generation of a family of soliton crystals
Here we study soliton crystals in a nonlinear Kerr

microresonator platform to explore analogous patterns
and dynamics. The motion of solitons is determined by
the environmental potential provided by both the back-
ground wave and waveform tails of other solitons, which
can be controlled by the detuning and power. Solitons can
be fixed in or escape from the local potential minima. The
trapping and escape of solitons have been recently
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reported in different resonator platforms49–51. Double
solitons may form soliton molecules through locking to
potential minima assisted by dispersive waves35. Solitons
may also be trapped by periodic potential minima to form
a crystallized structure. The interference of two or more
strong spectral lines in microresonators can build a per-
iodically modulated background wave that provides such
a periodic sequence of potential wells. One of the two
spectral lines is usually the coupled-in pump line, and the
other lines can be provided by auxiliary lines or enhanced
lines via different mechanisms26,31. In this work, we use
the strong coupling between two eigenmodes and the
resulting avoided-mode crossing (AMX) to introduce
spectrally local perturbations in several resonances.
We generate various soliton crystals in Si3N4 Kerr

microresonators with measured Q in excess of 106,
anomalous dispersion, and free spectral range (FSRs)
≈64.8 GHz. With details of the measured cold cavity dis-
persion noted in Supplementary Note 1, the measured
dispersion D2/2π is ≈ 267 kHz. Figure 2a depicts our
experimental setup. A continuous-wave laser followed by
an erbium-doped fiber amplifier provides the L-band
(long-wavelength band) pump. The inset of Fig. 2a is an
optical micrograph of our microresonator. The pump
input-output coupling is via bus waveguides and free-
space lenses, with two circulators for unidirectional light

propagation and two polarizers to purify the light polar-
ization. The pump undergoes an ≈1 dB attenuation in the
leading circulator and an ≈3 dB coupling loss into the bus
waveguide. The chip output is separated by a 1 × 4 fiber
coupler, simultaneously measuring the optical and radio-
frequency spectra, cavity response, and output power with
a piezoelectrically-tuned forward-swept laser (i.e., cavity
blue-side to red-side wavelength sweep). The pump line is
removed by a 7.5-nm band stop filter before RF char-
acterization, and a vector network analyzer measures the
cavity response with radio-frequency (RF) modulation
applied onto the pump via an electro-optic phase
modulator.
We experimentally obtain several deterministic paths to

access different soliton crystals in a range of devices; these
states are then distinguished via numerical simulations
and ultrafast temporal imaging. To elucidate the operat-
ing map, Fig. 2b shows the modeled spatio-temporal
nonlinear dynamics and generation of the soliton crystals
via a perturbed Lugiato–Lefever equation31,35,52,53 (LLE)
without temperature independence for illustration clarity.
With our experimentally measured parameters, the non-
linear modeling reliably produces the soliton crystals via a
forward blue-to-red sweep, with a family of spatio-
temporal dynamics over six different regions. As shown
in Fig. 2b, PSCs and spatial breathers are generated

a c

d e f

b
Perfect SC

SC with 
single dark defect

Spatial breather 
with a dark defect

Spatial breather 
with bright defects Chaotic Solitons N switching

Time

Intracavity position

N2

N1

Fig. 1 Breather dynamics of microcomb soliton crystals | Schematic illustration of the soliton crystals, breathers and dynamics. a–f Spatial-
temporal structure of different optical soliton crystals (SCs), in correspondence with atomic crystals. a Perfect SC, in periodic potential wells from the
extended background electromagnetic wave. b SC with single dark defect. The soliton in periodic crystals can be individually missing, leaving a dark
vacancy defect. c Spatial breather with one dark defect. The soliton near the defect can diffuse to the other side of the defect. d Spatial breather with
one bright defect. The interstitial soliton interacts with the neighboring soliton with an elastic-like collision. e Chaotic SC, with fluctuating motions of
soliton crystals including intensity variations. f N-switching of soliton crystal, with a new potential well generated without a soliton occupying, as well
as the addition of a vacancy
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following chaotic regions, and the spatial breather motion
gradually evolves into a stationary state. Figure 2b further
illustrates soliton crystals with one defect (1-defect SCs)
and the spatial breather with one defect (1-defect
breather). In our nonlinear simulations, stationary SCs
and spatial breathers with more than one defect are also
observed.
Figure 2c shows the measured spectral evolution of the

microcombs generated at 1593.1 nm with blue-to-red
detuning sweep, at 27.0 dBm pump. The soliton crystal
generation has five qualitatively different regions,

supported by simulation spectra, as: (i) primary spectral
lines, i.e., temporal Turing patterns, (ii) the chaotic
waveforms which subsequently lead to the SCs, (iii) a
2-defect breather, and (iv) a 1-defect breather, and (v) the
stationary multi-defect SCs. We note that the experi-
mental range is slightly larger than the simulated exis-
tence frequency ranges due to the resonance shift caused
by pump-induced cavity heating in our experiments. The
similar intracavity power of chaotic waveforms in region ii
and breathers in region iii makes it thermally stable to
reversibly switch between chaotic waveforms and soliton
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SC. c, d Experimental optical spectra of generated microcombs from a 64.8 GHz Si3N4 microresonator using forward (blue-to-red) laser sweeping at
27.0 dBm (c) and 25.6 dBm (d) input powers respectively. The white dashed rectangle denotes the region where chaotic soliton crystals stochastically
occur. The white dashed circle marks the region where the spacing between adjacent strong spectral lines changes from 46 FSRs to 47 FSRs and
subsequently 48 FSRs. e The VNA response plotted against modulation frequency in different SC states. “B” represents the peak induced by spatial
breathing. “S” and “C” represents the S- and C-resonances respectively

Hu et al. Light: Science & Applications          (2024) 13:251 Page 4 of 14



crystals. Aside from the B peak, the VNA responses of
breather and chaos states present similarities in Fig. 2e,
further reflecting the feasibility of reversible tuning
between these two states. This indicates that two states
exist at a similar detuning and intracavity power, which is
indeed what we observe experimentally, as shown in the
trace in Fig. 2c. The formation of breathers in region iii is
highly repeatable, indicating a deterministic generation
pathway. We attribute this to the existence of multiple
AMX resonances that contributes to a background
potential allowing only specific states. The prominent
comb lines in region v of Fig. 2c are spaced by N= 47
FSRs, denoting a lattice constant of 1/47 roundtrip. A
second deterministic state evolution path is shown in Fig.
2d, with a 25.6 dBm pump at 1593.7 nm. This path also
covers several sequential regions. We highlight the
reversible N-transition that alters the lattice constant,
wherein the transition points are marked by the dashed
white circles. This transition is explained by noting that
the AMX perturbation has a temperature dependence.
With forward-frequency sweep, the increased intracavity
energy induces a higher local temperature, thereby driving
the primary AMX perturbation to shift from μAMX= 46
to μAMX= 47 and finally μAMX= 48 as shown in Fig. 2d
(pathway II). The number of potential wells is determined
by μAMX, and it hence increases by one after each μAMX

transition. Since the total number of solitons is conserved
during the thermally-stable transition, therefore a vacancy
defect is formed (μAMX= 46 → 47) when the background
wave creates an additional potential well. Subsequently, a
newly generated soliton can occupy the vacant potential
well (μAMX= 47) with a further detuning change, as
shown in Fig. 2c.
We also note that this recurrence of chaotic states,

separated by regions of stability, within one forward
detuning sweep has rarely been reported in the study of
microcombs. This is seen in Fig. 2c, further detailed as
pathway I. Distinct from the sudden jump between
2-defect breather and 1-defect breather and stochastic
occurrence of chaotic solitons (the latter represented
by the dashed white box) in Fig. 2c, we also experi-
mentally observe the continuous and reversible spec-
tral evolution from 1-defect breather to the chaotic
solitons. The intracavity spatial motion of solitons in
the 1-defect breather gradually slows with a forward
detuning sweep and prior to settling down to a sta-
tionary state. We therefore observe two repeatable
approaches to obtain the soliton crystals with defects
and their corresponding breathers: generated from a
leading chaotic region shown in Fig. 2c; and generated
from the N-transition shown in Figs. 1l and 2d (path-
way II). Additionally, the chaotic solitons itself will be
further detailed in the temporal observation section
later in this manuscript.

We next characterize the cavity response and breathers
shown in Fig. 2c. With pump phase modulation, the cavity
response is obtained on the pump line using a vector
network analyzer33. Figure 2e plots the vector network
analyzer magnitude for the four different states of Fig. 2c.
We observe two major peaks in the vector network ana-
lyzer spectra for the 2-defect SC, namely the cavity (C)-
resonance and soliton (S)-resonance. C-resonance reflects
the effective cavity resonance considering the frequency
shift due to cross-phase modulation from the background
wave on the phase modulation sidebands. S-resonance
reflects the effective soliton resonance that deviates from
the C-resonance due to cross-phase modulation mainly
from solitons25. The S-resonance, together with the
optical spectrum, confirms the existence of soliton crys-
tals. The strength of S-resonance is dependent on the
number of solitons within the cavity. Since we have
45 surviving solitons in a 2-defect SC, the corresponding
S-resonance is much stronger than C-resonance. As the
SCs approach the breather states, the S- and C-resonances
become closer and difficult to distinguish. Furthermore,
there exists a new peak featured in both the 2-defect and
1-defect breathers induced by the dynamical breathing,
which we term the “breathing (B)-peak”. The B-peak in
the 2-defect SC is located at almost the same frequency as
the 1-defect SC due to the similar breathing frequency.
We expect the magnitude of the B-peak to be correlated
with the number of spatial breather solitons at each
instance (which, in this study, directly corresponds to the
number of defects). This is indeed observed in the
experiment with the 2-defect SC having a higher B-peak
than the 1-defect SC. The B-peaks shift to a lower fre-
quency with a forward pump sweeping, verifying the
slowing of spatial breathers. The B-peak is almost missing
when SC evolves into a chaotic state.

Discussion
Mechanism of spatial motion in soliton crystals
Besides the resemblance in form between atomic and

soliton crystals, we find that soliton kinetics in soliton
crystals can also be explained via the concepts of velocity,
potential, and energy, analogous to particle mechanics.
Figure 3a shows the numerical model of a 1-defect
breather with a breathing frequency similar to an
experimental fB ≈ 60MHz illustrated in the right inset.
The soliton propagation velocity is slightly altered when
near the defect compared to the SC background; this
soliton thus escapes from the local potential minima and
drifts with respect to the crystal ensemble. This drifting
soliton occupies the vacant potential well and generates a
new defect at its original position. This unpinning and
subsequent occupation of defects by adjacent solitons
repeats periodically, resulting in a spatially breathing
crystal and a periodic variation of the intracavity power.
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Spatial breathing results from many-body interactions,
and the spatial motion is relative to the soliton crystal
background. The spatial breathing of solitons thus occurs

due to a physically distinct mechanism compared to tra-
ditionally observed soliton breathers or the vibration of
soliton molecules. When defects and solitons move across
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each other, remarkably, the solitons remain stable. The
spatial breathing might however become unstable during
the transition between the breather and stationary state,
giving rise to chaotic solitons that are identifiable in their
RF spectra, detailed later in Fig. 4.
In the left inset of Fig. 3a, we plot the resultant selected

intracavity spatial snapshots from the dashed white rec-
tangular region. The first intracavity peaks are aligned to
illustrate the soliton dynamics. The dispersive waves
induced by third-order dispersion (TOD) lead to asym-
metric soliton tails, with higher intensity at the leading
edge of the soliton. The emitted dispersive wave by one
soliton exchanges energy with the background wave and
other solitons. At the beginning of the spatial motion, the
peak intensity and phase of this candidate soliton

gradually vary. This process imparts the candidate soliton
with a lower velocity than the remaining soliton ensemble.
The energy consistently transfers from the leading front
to the trailing edge as the candidate soliton moves. The
moving soliton approaches the vacant potential minima
and its group velocity with respect to the crystal decreases
gradually. Subsequently, the candidate soliton is trapped
in the position of the original defect.
Corresponding to the spatial breather of Fig. 3a right

inset, Fig. 3b illustrates the measured optical spectrum of
the 1-defect SC, with prominent lines marked in yellow.
The AMX and pump resonances are denoted by the
purple and red arrows respectively. The spatial waveform
of the stationary 1-defect SC can be understood as the
destructive interference between PSC and an out-of-phase

a b c

e f g

d

200 300 400 500 600

20 30 40 50 60

PSC

1-defect SC

1-defect breather

2-defect breather

chaotic SC

PSC

1-defect SC

1-defect breather

2-defect breather

chaotic SC

–60

–40

–20

0

–60

–40

–20

0O
pt

ic
al

 In
te

ns
ity

 (
dB

m
)

O
pt

ic
al

 In
te

ns
ity

 (
dB

m
)

–60

–40

–20

0

–60

–40

–20

0

–60

–40

–20

0

–60

–40

–20

0

–60

–40

–20

0

–60

–40

–20

0

–60

–40

–20

0

–60

–40

–20

0

1500 1550 1600 1650 1700

Wavelength (nm)

1500 1550 1600 1650 1700

Wavelength (nm)

0 0.25 0.5 0.75 1

Frequency (GHz)

RF Frequency (MHz)

0 0.25 0.5 0.75 1

Frequency (GHz)

R
F

 in
te

ns
ity

 (
dB

m
)

R
F

 in
te

ns
ity

 (
dB

m
)

–80

–70

–60

–50

–70

–60

–50

–70

–60

–50

–70

–80

–70

–60

–50

–70

–60

–50

–70

–60

–50

–60

–50

–155

–125

–95

–65

–155

–125

–95

–65

–70

–60

–50

Experimental optical spectra Experimental RF spectra Simulated optical spectra Simulated RF spectra

Blue-to-red sweep (MHz)

0 200 600400 0
0

100

200

300

400

100 300200
0

100

50

150

B
re

at
he

r 
fr

eq
ue

nc
y 

(M
H

z)

50

90

110

70

150

130

B
re

at
he

r 
fr

eq
ue

nc
y 

(M
H

z)

(ω0-ωP)/2� (MHz)

(ω0-ωP)/FSR (milliradian)

PIN 0.1 W
0.15 W
0.2 W
0.25 W

1-defect
2-defect

Simulation

RBW = 100 kHz

Experiment PIN � 0.2 W (Pump: 27 dBm)

2-defect breather 1-defect breather

B
lu

e-
to

-r
ed

 s
w

ee
p 

(M
H

z)

chaos signature

low noise

breathing frequency

2nd harmonics

MAX

Experiment

PIN � 0.145 W (Pump: 25.6 dBm)

Fig. 4 Measured-simulated optical and RF spectra, and breathing frequencies of the soliton crystals (SCs). a Experimental optical spectra of
the PSC, 1-defect SC, 1-defect breather, 2-defect breather, and chaotic SC. The magenta arrow marks the dominant AMX point at μ= 48.
b Experimental RF spectra corresponding to a. The resolution bandwidth (RBW) is 100 kHz. c Simulated optical spectra corresponding to a.
d Simulated RF spectra corresponding to a. e Experimental evolution of the measured SC breathing frequency at 200 mW (pump = 27 dBm), tuned
from the 2-defect breather (red) to the 1-defect breather (blue), with the transitions illustrated earlier in Fig. 2c. Red and blue blocks represent the
recorded breathing frequencies. f 2D map of detuning plotted against measured RF frequency. As we tune the pump to the red side, we clearly
observe the transition from a single sharp breathing line, to a partially chaotic spectrum and then a sudden transition to a low noise state, in good
agreement with Fig. 2d for a blue-to-red sweep from 1.80 to 2.15 GHz. g Modeled breathing frequency of the 1- and 2-defect breathers as a function
of detuning at different input powers

Hu et al. Light: Science & Applications          (2024) 13:251 Page 7 of 14



soliton located in one potential well33. Hence, if we filter
out the prominent lines (effectively arising from the PSC)
of 1-defect SC, the remaining optical waveform would be
a soliton-like pulse located at the vacancy. We use the
same strategy to understand the 1-defect breather. Figure
3c depicts the evolution map of the waveform after this
filtering. Three pulses labeled with porigin, pmid, and pnew
are involved in the spatial motion of one soliton. As
shown in Fig. 3c inset, we note that pnew is in phase with
porigin and out of phase with pmid. At the beginning of
soliton motion, pnew and pmid are close enough to form a
deconstructive interference. With the soliton moving,
pmid then moves away from pnew and towards porigin,
causing a deconstructive interference with porigin. These
dynamics indicate the annihilation of the original dark
defect and the creation of a new dark defect in 1-defect
SC.
The antithesis of the dark defect is the bright defect

shown in Fig. 1j, where the moving soliton collides with
the next one elastically. The dynamics of the dark and
bright defects show unidirectional propagation with
respect to the crystal background. The 1-defect crystal can
be understood as two domain-walls connecting two PSCs
and the defect31,54–56. The parity symmetry breaking
induced by TOD causes asymmetric crystal structure at
two sides of the defect, acting as an external force. The
externally driven domain-walls propagate uni-
directionally, transiting the candidate soliton. The
domain-wall is sometimes termed “topological defects” or
“topological soliton” which exhibits the topological
robustness while moving57. Here we compare our simu-
lation results to our experimental data – to compare
equivalently, we also include the frequency microcomb
noise. As shown in Fig. 3d, we first estimate the intracavity
noise via the microcombs power recorded with a high-
speed photodetector and real-time oscilloscope with 100
GSa/s sampling rate (photodetector bandwidth at
20 GHz). A 4-nm-bandwidth bandpass filter, illustrated by
the dashed purple rectangle in Fig. 3b, is applied to
increase the signal contrast. Details of intracavity noise
estimation can be found in Supplementary Note 2,
including the limit cycle fluctuations. Here all noise
effects are attributed to detuning disturbances up to
5MHz for simplicity. The simulated AC-coupled intensity
has a clean curve without considering intracavity noise,
while notable noisy experiment-like signatures appear
after considering intracavity noise. This intracavity noise
varies with the pump power and frequency.
To understand the soliton complexes and associated

transport, we parametrized the dynamical trajectories of
solitons in the interaction plane58,59 with complex num-
ber ρeiφ where ρ and φ represent the spacing and phase
difference between subsequent soliton peaks respectively.
We further define a collective figure-of-merit for the

soliton crystal to describe the collective motion:

ρcoll ¼
XN�D

n¼1

ρne
iφn=ðN � DÞ ð1Þ

where N is the number of solitons if the crystal were
perfect, D is the number of defects, ρn and φn are the
spacing and phase difference between nth and (n+ 1)th
soliton peaks respectively. In Eq.(1), the periodic bound-
ary condition ρn= ρn+N-D, φn= φn+N-D is applied. Figure
3e illustrates the resulting modulus and phase of ρcoll
from 16,000 roundtrips, depicting intracavity traces along
a limit cycle. These traces may slightly deviate from the
limit cycle with estimated intracavity noise. Interestingly,
the deviation increases with the collective velocity
(vcoll= ∂ρcoll/∂t) as marked by red arrows, where the
slow time t increases with roundtrips. In the inset, we also
plot the trace of all ρn in the 16,000 roundtrips. Most of
the time, ρn is located near the crossing between two
dashed gray lines evidencing a stable and in-phase SC
background -- indicating that the solitons move
sequentially.

As detailed above, the asymmetric tail of solitons
induced by TOD and the background wave governed by
AMX largely determine the spatial breathing. As shown in
Fig. 3f, the fB-D3 dependence follows the same trend at
different detunings and reaches a stationary point beyond
D3=−2 kHz. These curves indicate that the asymmetric
tail assisted by the TOD is the decisive cause for the
spatial motion of solitons. AMX introduces local pertur-
bations in the modal frequencies of the microresonator,
resulting in the formation of primary lines at these loca-
tions. Furthermore, once soliton pulses are generated, this
modal mismatch due to AMX may result in the formation
of dispersive waves56,57. Dispersive waves of soliton pulses
interlock to form a periodic background potential field.
These background field act as potential wells and trap
solitons by helping balance the nonlinearity and disper-
sion locally35. The intensity of primary lines, as well as
dispersive waves, depends on the AMX strength. Coher-
ent beating between these primary lines and the pump
line creates an intracavity background with spatially per-
iodic maxima. These intracavity maxima act as potential
wells and trap solitons by helping to balance the non-
linearity and second-order dispersion locally. The pre-
sence of third order dispersion however creates an
asymmetry in the soliton profile which allows solitons to
escape in a preferential direction when perturbed. At
certain values of detuning and pump power, solitons may
periodically enter and exit the empty potential well which
leads to spatial breathing. Figure 3g shows the spatial
breathing fB as a function of the AMX strength. If the
dispersive wave caused by AMX has higher intensity, the
intracavity maxima are correspondingly stronger and
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apply a larger binding force on solitons. This explains the
dependence between the breathing frequency and AMX
strength. This also indicates that solitons may no longer
be stably locked in potential wells if the dispersive wave
intensity is low.

Experimentally recorded and simulated Kerr soliton
crystals
Furthering from the dynamics and deterministic gen-

eration of different soliton crystals in the above section,
here we present a further detailed characterization of
optical spectra, RF spectra, and tunable breathing fre-
quencies of the crystal states. The optical spectra of some
representative soliton crystals and corresponding RF
spectra are summarized in Fig. 4a, b. Most experimental
spectra except the 1-defect SC are measured with a
25.5 dBm pump at 1593.7 nm, while the 1-defect SC is
measured with a 25.5 dBm pump at 1593.1 nm. Two
stationary states, including the PSC and 1-defect SC, have
low-noise RF spectra. The purple top arrow marks the
dominant AMX point that is spaced by ≈ 48 FSRs with the
pump resonance, with the residual background near the
pump from amplified spontaneous emission. The
numerically modeled reproduction of these two states is
shown in Fig. 4c. The breathing frequencies of the
1-defect and 2-defect breathers are about 150MHz and
137MHz. The temporal variation of the microcombs
power is not a perfect sinusoid, which corresponds to
harmonic peaks. We highlight the spectral interference
pattern in the 2-defect breather, directly correlated with
the spacing between two defects. We determine the defect
spacing to be 12/48 roundtrip by comparing this spectral
pattern to simulated results in Fig. 4c. The simulated
dynamical and stationary structures confirm our
hypothesis. The spectral similarity between spatial
breathers and stationary SCs is a useful tool to deduce
defect spacing. When SCs become chaotic, we observe
significant spectral fluctuations compared to the spatial
breather. In RF spectra of chaotic solitons, the chaotic
pattern appears but surprisingly exhibits some unique
features distinct from normal chaotic states. The RF noise
is not solely extended to fill low RF frequencies but also
distributes around the breathing frequency and its har-
monics. We also see that the chaotic motion mixes with
the intensity fluctuation of soliton crystals through the
modeled nonlinear temporal structure.
Figure 4e, f plot the RF information of SCs measured in

two selected generation paths in Fig. 2c, d. The datasets
are recorded with a fast sweep to avoid the slow drift of
the pump detuning. The breathing frequency can be
tuned within a strikingly broad range from 56MHz to
128MHz in Fig. 4e. At a lower pump power of 25.5 dBm
at 1593.1 nm, we even get a breathing frequency down
to ≈ 10MHz. Such a broad tuning range has yet been

observed in microresonator breather soliton states and is
attributed to the unique breathing mechanism. The
breathing frequencies generally decrease with a blue-to-
red sweep in both generation paths. Interestingly, the
slope sign of 1-defect breather in Fig. 4e tends to zero and
even flips to be a positive value at low breathing fre-
quencies. The simulation-accessible fB under 10MHz is
difficult to experimentally access due to the appearance of
chaotic waveforms at the low breathing frequency. We
attribute this phenomenon to the intracavity RF noise
characterized in the above paragraph. Therefore, we
summarize two mechanisms to generate chaotic soliton
waveforms: the unbalance between the AMX strength and
TOD, as discussed in the former section; the detuning
disturbance induced by intracavity noise (detailed in
Supplementary Note 2).
In Fig. 4g we simulated the detuning dependence of the

breathing frequencies at different input powers. The flip
of the slope sign is observed at 100mW, 150 mW, and
200mW. With increasing input power, the existence
range and breathing frequencies of breathers generally
red-shift. The 1-defect breather and 2-defect breather
share similar existence range and breather frequencies,
while they exist in different frequency ranges in Fig. 4e.
The number switching of defects in experiments can be
explained by the background wave variation due to the
thermal dependence of AMX strengths (further detailed
in Supplementary Note 1 and 2).

Temporal observation of the dynamical breathing
In prior sections, we have explored the deterministic

generation, dynamical properties, and the physical
mechanism of different soliton crystals. Soliton crystals
have hitherto primarily been studied on slow-time
scale31,58,60 using spectral measurements via an OSA or
temporal characterization as measured by intensity auto-
or cross-correlation. However, these methods are unable
to accurately capture dynamically evolving crystal states,
such as breathing SCs or quasi-chaotic solitons. The prior
methods used to record the dynamical temporal structure
include large bandwidth oscilloscope33, time-lens25,61, and
time-stretched dispersive Fourier transform (TS-DFT)62.
In this section, we further delve into the temporal beha-
vior of soliton crystals observed in a panoramic-
reconstruction temporal imaging (PARTI) system58.
Figure 5a manifests the experimental setup for under-

standing the spatial breathers. A soliton sequence with an
angular breathing frequency ωB is generated from DUT
and recorded separately in slow- and fast-time scales. Our
temporal imaging system primarily consists of a four-
wave mixing (FWM) based time lens and an optical buffer
to increase the record length of a single frame62. The
generated breathing soliton crystal first goes through
BPF2 to match the FWM bandwidth. The maximum
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record length for one shot is limited to around 500 ps. We
effectively extend the recording length in one frame to
2 ns by generating 9 replicas in the optical buffer and
stitching their images with a fixed temporal shift. The
frame rate of our temporal imaging system is 2MHz.
The repetition rate of the breathers reaches over

60MHz and the period of the breathers is much longer
than the PARTI frame length of 2 ns. The detailed
breather dynamics is too fast to be captured using direct
photoelectrical detection and the period is too long to be
captured in one frame in PARTI. The phase-differential
sampling we use is inspired by the stroboscopic effect.
Figure 5b shows the phase-differential sampling sche-
matic of using a low frame frequency of fF to capture the
full dynamics of a periodic signal with a high repetition
rate fB. We can use the stroboscopic effect to stitch the
dynamics of breathers in a full period. ϕres is the accu-
mulated phase difference between the SC breather and
time-lens sampling after 500 ns. Here, the blue circle
represents the frame repetition in the temporal imaging
system while the red circle represents the periodic signal
repetition. The residual phase difference between the
periodic signal and the frame after τF= 1/ fF is given by
φres= 2π mod (fB / fF), where mod is the remainder
function. The frame length τL≈ 2 ns can also be expressed
in the form of a phase span of φL= 2π fB τL. Considering
φres in the range of (0, π), the dynamics of the signal
within one period is down-sampled when φres > φL and
over-sampled when φres < φL. The generated soliton
crystal first goes through BPF2 to match the bandwidth of
FWM. The simulated waveform of 2-defect SC in one
roundtrip after BPF2 is plotted in Fig. 5c. Although the
crystal-like structure of the soliton ensemble is masked
due to the limited FWM and BPF2 spectral bandwidth,
the spectral bandwidth is still sufficient to resolve the
spatial dips corresponding to the soliton crystal defects.
Figure 5d exhibits the numerically modeled of the
breather crystal dynamics over large roundtrips. The
spectrally-filtered trace of the 2-defect breathers shows
that spatial dips occur with a constant period marked by
the white dashed line. The spatial spacing of two dips is
presented via a black dashed line. The sequent generation
of two dips indicates that the solitons near two defects
spatially move with a temporal phase difference, as out-
lined by the purple dashed line. Using a 2MHz sampling
rate and a 2 ns frame length, Fig. 5e shows the simulated
2D trace through the PARTI metrology system. The
resampled map reconstructs two dips via resampling and
stitching multiple breathing periods. This process is in the
same principle as the stroboscopic effect.
Figure 5f shows the experimental 2D evolution map of

the 2-defect breather recorded by the PARTI temporal
imaging. We select a crystal state with a breathing fre-
quency of ≈ 56MHz, corresponding to an ≈ 18 ns

temporal period. Therefore, we use nine frames or more
to fully recover the breathing dynamics. In parallel to the
simulated evolution map, we clearly illustrate the resam-
pled period, spatial spacing and breathing phase differ-
ence of two dips in Fig. 5f, reflecting that the solitons near
the two defects move with a non-zero phase offset. The
breathing frequency is quite stable, inducing a nearly
periodic pattern.
In contrast, the breathing frequency of the 2-defect

breather drifts sizably in Fig. 5g, giving rise to a decreasing
period of the dips with the number of roundtrips which
indicates that φres varies away from 0. Figure 5h, with its
finite-linewidth breathing peak, verifies the breathing
nature of the SC, including drift. When chaotic wave-
forms occur, the clear evolution shown in Fig. 5f, g is
replaced by a chaotic process with dips randomly
appearing as shown in Fig. 5i. The inset shows the cor-
responding RF spectrum, with a clear low-frequency noise
for the chaotic state of the multi-soliton nonlinear
dynamics.

Conclusion
In summary, we observe the formation and evolution of

various soliton crystal states, including the presence of
different kinds of defects and breather states. We show
that the soliton crystal dynamics is caused by AMX in
silicon nitride microresonators with suitable modal dis-
persion. We explored the generation pathways of these
crystal states and observed the first occurrence of spatial
soliton crystal breathers in microresonators which are
distinct from traditionally observed soliton intensity
breathers due to their periodic spatial motion with respect
to the remaining solitons within the crystal. We subse-
quently established different pathways to reliably generate
these breather soliton crystals and explored transitions
between the number of defects and soliton number, both
induced by the thermal dependence of the AMX. We next
described the formation of these states in simulations and
elucidated the mechanisms of spatial breathing and the
existence range of these crystal breathers. We further
correlated both in experiments and simulations that the
soliton breathing frequency is tunable continuously from
several MHz to a few hundred MHz by changing pump
detuning. We subsequently mapped the spatial breathing
in real-time by observing the evolution of the defect
within the crystal via our nonlinear time-lens system. This
study explores the dynamics of soliton crystal breathers
that have hitherto been relatively unexplored and con-
tribute to advances in nonlinear dynamics, many-body
physics and practical applications of soliton crystals62.
Our study helps the modal dispersion design of micro-
resonators used for soliton crystals, to avoid possible
unwanted states. We present several deterministic paths
to generate soliton crystals with defects, especially the
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path to soliton crystals with one defect and perfect soliton
crystal. Soliton crystals with one defect have been used for
dense data communication40, radiofrequency signal pro-
cessing63, and optical neuromorphic processing5.

Materials and methods
Device nanofabrication
We designed a high-Q Si3N4 microresonator, nanofab-

ricated via a CMOS-compatible process64. The fabrication
process is as follows: we first deposit a 5 μm-thick SiO2

bottom oxide via plasma-enhanced CVD on a silicon
wafer which acts as the under-cladding to minimize loss
to the substrate. We then deposit 800 nm Si3N4 via
LPCVD for the resonator structures. This layer is then
patterned with deep-ultraviolet lithography and etched
down to the cladding oxide via reactive ion dry etch. The
wafer is then annealed at 1150°C, to reduce the prevalence
of N-H, Si-H, and Si-O-H bonds and thereby reduce
propagation loss. The structures are then capped with a
3 μm top oxide.
The resonator consists of two tapered straight wave-

guides connected by semicircular regions, one of which is
coupled to the input bus. This design is chosen to
maintain cavity Q while simultaneously minimizing the
presence of multiple mode-crossing points and achieving
anomalous dispersion around the pump wavelength. The
200 μm bend radius and the 1 μm waveguide width
suppress higher-order modes. The straight waveguides are
tapered from 1 μm at the edge to 2 μm at the center and
back. This waveguide geometry allows us to achieve the
targeted cavity dispersion and filter higher-order modes.
The adiabatic nature of the taper ensures the preservation
of the cavity Q.

Processing of PARTI datasets
The datasets recorded by the PARTI system include

frames with a 2MHz repetition rate. Figure 6a plots one

of the frames corresponding to the measurement maps
shown in Fig. 5f, g. Each frame contains one blank region
and ten replicas that cascade with a constant time delay.
The blank region is designed to distinguish different
frames. Figure 6b plots the zoom-in of one replica marked
by red dashed rectangular in Fig. 6a. There are several
roundtrips within one replica, and we depict one example
roundtrip in the Fig. 6b inset. During the data processing,
we first split each replica into roundtrips, and then we use
(V−Vmin)/(V−Vmax) to normalize the recorded intensity.
The roundtrip time is manually selected to clearly illus-
trate the evolution of the recorded intensity. Here we set
the minimum voltage in each roundtrip to be zero,
thereby increasing the contrast between two out-of-phase
dips shown in Fig. 5f. We delete several roundtrips at the
beginning and end of each replica to remove the redun-
dant roundtrips that overlap on subsequent and prior
replicas and thereby increase signal quality. Subsequently,
we stitch roundtrips together in each replica and stitch
replicas together in each frame. The blank region in each
frame is deleted. Then we stitch all frames together to
obtain the evolution maps in Fig. 5f, g.
Supplementary information accompanies the manu-

script on the Light: Science & Applications website
(http://www.nature.com/lsa).
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Supplementary Note 1. Avoided-mode crossings and their temperature dependences 

 

 

Figure S1 | a, The thermal configuration of the device under test. A Peltier module (CM29-1.9-

04AC) is attached with the metal platform that holds the chip. This Peltier module can actively 

control the chip temperature via a PID feedback provided by a temperature controller (TED200C) 

connected to a thermistor (USP12837). The microcavity works as a cold cavity when the 

intracavity power is low. b, The microcavity works as a hot cavity when the laser input is coupled 
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into the microcavity. c and d, The experimental (solid line) and fitted (dashed line) transmission 

spectra near AMX1 (c) and AMX2 (d) of the cold cavity at different temperatures. The experimental 

transmission is normalized to 1, and the experimental data is plotted in solid line because of the 

high data density. The fitting is based on the coupled-mode theory. The fitting is based on the 

coupled-mode theory. The unperturbed modal frequency is marked with black dashed lines. The 

AMX strength is defined as the shifting frequency of the deepest sub-resonance with respect to the 

unperturbed modal frequency. e and f, The strengths of AMX1 (e) and AMX2. (f) of the cold cavity 

at different temperatures. The AMX strength is the frequency shift of the dominant sub-resonance 

with respect to the resonance without AMX. g, The measured and fitted mode spacing as a function 

of the measured mode number at ΔT = 0℃. h, Measured Dint as a function of the wavelength. 

 

As shown in Fig. S1a, the microcavity works as a cold cavity when low-power light is coupled 

into the microcavity. The local temperature near the microresonator T is the same as the chip 

temperature. Mode indexes of the microresonator are known to be a function of the lattice 

temperature. When the pump is coupled into the microcavity, the intense intracavity power creates 

a hot cavity via the photothermal effect, as illustrated in Fig. S1b. T then deviates from the chip 

temperature, thereby affecting the resonance wavelength and the AMX strength.  

One of the significant characteristics of the mode crossing is the resonance splitting near the 

AMX point. Each resonance near the crossing point splits into two sub-resonances. Here we do 

not specify the AMX strength as the highest perturbed mode. Instead, each perturbed mode has its 

AMX strength. The AMX strength is determined by the frequency shift of the deepest sub-

resonance with respect to the unperturbed modal frequency before splitting. 

 Directly imaging AMXs of the hot cavity is possible but difficult. Instead, we simulate the 

hot cavity by tuning T of the cold cavity. The initial temperature, i.e., the temperature used in comb 

generation, is set to be 37.03 ℃. Adjusting the target resistance of the thermistor through the 

temperature controller, we can actively induce a temperature variation ∆T. As shown in Fig. S1c, 
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we firstly compare the transmission spectra near AMX1 of the cold cavity at different ∆T. The 

hybrid mode caused by AMX has two sub-resonances. At low T, the dominant sub-resonance is 

the one away from the pump wavelength, creating a positive frequency shift with respect to the 

resonance without AMX. When we decrease the target resistance of the thermistor to increase the 

target temperature, the hybrid mode has a red-shifting and the dominant sub-resonance changes to 

the one close to the pump wavelength. The negative AMX strength corresponds to the locally 

reduced detuning in the LLE simulation. In contrast, the hybrid mode induced by AMX2 is 

constantly dominated by the sub-resonance close to the pump wavelength, with the mode 

resonance approaching a clean resonance without AMX when the temperature increase. 

Additionally, we experimentally measured the transmission curves of two polarizations and it 

prove that the AMX type in the current design is polarization-type. 

We implement coupled-mode theory to fit the experimental transmission spectra. Assuming 

that a and b are two eigenmodes of the resonator and they have a coupling strength of g, a and b 

are then linked via the coupled-mode theory1, 
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Here, a  and b  are the amplitude; ωa and ωb are the angular mode frequencies near AMX1 at 

the initial temperature and ωa-ωb = δab; γa and γb are the intrinsic loss rates; Гa and Гb are the 

coupling loss rate; g is in the unit of Hz. Ignoring the polarization conversion of inside the 

microresonator, the output and input are related by1, 
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where in and out represent the input and output of the field amplitude, respectively. Choosing a as 

the primary mode when coupling laser input into the cavity, the transmission is given by 

2
out in| |a a  . We use a Particle Swarm Optimization method to find roughly fitting parameters and 

then manually adjust them to fit the transmission at ∆T = 0. The fitting parameters are listed in 

Table S1. The coupling strength is larger than the linewidths of both modes. 

When taking ∆T into consideration, ωa and ωb are expressed as, 

 

(0) FSR
( ) (FSR )

FSR

(0) FSR
( ) (FSR )

FSR

a a
a a

a

b b
b b

a

d
T T

dT

d
T T

dT





   

   
 (3) 

We further obtain the fitting value of FSRb and the thermal dependence of both FSRs. 

Table S1 | The parameters used to fit the transmission near AMX1 and AMX2. 

Parameters ωa γa γb Гa Гb g δab 

Fitting value (×2π MHz)  1.91×108 52 78 30 18 175 94 

Parameters FSRa- FSRb dFSRa/d∆T dFSRb/d∆T 

Fitting value 0.45 GHz -0.155 MHz/C⁰ -0.146 MHz/C⁰ 

Using the fitting parameters in Table S1 and the same temperature sets of experiments, we then 

obtain the fitted transmission as shown in Figure S1. In general, the experimental result and 

theoretical fitting match well. The slight spectral mismatch is attributed to the deviation between 

the actual temperature and estimated temperature via the resistance. The small shoulder in Fig. 

S1d is caused by a third mode. Here we assume its weak influence on the AMX strength is already 

considered in mode b. Then we further quantitively analyze the temperature dependence of the 

AMX strength. Here the AMX strength is defined as the frequency shift of the dominant sub-

resonance with respect to the resonance without AMX.  

We have observed several interesting features during the generation of soliton crystals: ⅰ. 

generation paths are highly repeatable at the dynamical breathing region; ⅱ. the transition from 2-
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defect breathers to 1-defect breathers; ⅲ. the spacing of prominent comb lines increase by one 

resonator FSR with blue-to-red detuning. ⅳ. the spectra envelop near the prominent comb lines. 

These features can be explained from the perspective of avoided mode crossings (AMX) and the 

consequent intracavity background wave. ⅴ. The solitons move in different phases. For example, 

we attribute features ⅰ, ⅱ, and ⅳ to the synergy of AMX at different resonances. Feature ⅱ and 

feature ⅲ are a result of background variations, and they are mainly attributed to the temperature 

dependence of AMX. In Fig. S1e, the change of the sign means that the sub-resonance close to the 

pump wavelength becomes dominant, enabling Feature ⅲ. Then the AMX1 strength, as well as the 

AMX1 strength shown in Fig. S1c, turns weak when the temperature further increases. As 

discussed later in Supplementary Note 2, the synergies of different AMX1 allow different states, 

giving rise to Feature ⅱ. 

Kerr effect also contributes to the change of mode indexes. Because solitons experience a 

near-zero effective detuning, the Kerr frequency shift experienced by the soliton can be 

approximated as the opposite number of the laser detuning. The laser detuning in the simulation is 

near the level of 0.4 GHz. This value is much smaller than the frequency shift shown in Figures 

S1e and S1f. Therefore, using the thermal dependence of AMX to explain Feature ⅱ and ⅲ is 

sufficient. 

Fig. S1g illustrates the measured dispersion curve of the microresonator. The measured 

dispersion term D2/2π varies to be around 267 kHz, and D3/2π varies to be around -1.2kHz. The 

dispersion term slightly changes with temperature varying. 

 

Supplementary Note 2. Nonlinear numerical modeling 

Lugiato–Lefever equation 

The generation and dynamics of soliton crystals in microresonators can be described by a 

normalized spatial-temporal Lugiato–Lefever equation (LLE) with the second-order and third-

order dispersion terms2-5: 



SM-7 

 

 
3

2 1

2

(1 ) ( )
!

m
m m

m
m

i i i F
m

    
 





 
      

    (4) 

Here all variables are dimensionless in Eq.(4). ψ is the slowly varying intracavity field amplitude, 

and F is the external pump amplitude. The square-modulus of F and ψ are normalized to the 

threshold amplitude for parametric oscillation o 3
0

thresh ld

8 exF
g

 



, where g is the nonlinearity 

coefficient, κ is the pumped resonance linewidth (total loss rate), and κex is the coupling resonance 

(coupling loss rate)3. α is equal to 2(ω0-ωp)/κ, describing the detuning between the angular 

frequency of the pumped resonance ω0 and the angular frequency of the pump laser. βm is equal to 

-2Dm/κ, where Dm=∂2ωμ/∂μ2|μ=0 and μ denotes the number of the resonator mode with respect to 

the pumped mode. ψ(θ, τ) is defined on the intracavity “spatial dimension” θ, and the slow-time 

“temporal dimension” τ. The azimuthal angle θ ranges from 0 to 2π along the circumference. The 

normalized time 𝜏 is equal to 𝑡κ/2. 

The numerical simulations of LLE are conducted through a fourth-order Runge-Kutta in the 

interaction picture method, which is a split-step Fourier algorithm 2,3. The total mode number is 

1025 in the simulation. The parameters are chosen based on the measured results: FSR = 64.8 

GHz, κ/2π = 188 MHz, κex/2π = 99 MHz, ω0/2π = 188.11 THz. g is given by ħω0
2cn2/n0

2Veff. To 

better match simulation and experiment results, we choose D2/2π = 230 kHz and D3/2π = -4 kHz 

in the simulation. Here ħ is the reduced Planck constant, n2 = 2.5×10-19 m2/W is the nonlinear 

refractive index, n0 = 1.98 is the effective mode index, Veff = 0.8×103 μm3 is the effective mode 

volume. Notice that the massive simulation is finished before the fine measurement on the 

microresonator dispersion, so there is a small difference in the parameters in the simulation 

parameters compared to the experimentally acquired parameters. Unless otherwise stated, these 

parameters are the default parameters. An additional note for the simulation is that we obtain the 

intracavity field and corresponding spectra in LLE simulations. In experiments, we obtain the 

spectra recorded after various losses. Therefore, we phenomenologically add loss after obtaining 
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the stimulated results to match the experiments. Then we discuss how to simulate soliton crystals 

and incorporate higher-order dispersion, thermal effect, avoided crossings and noise in our work.  

1) Higher-order dispersion 

 The modal dispersion term is 1

2

( )
!

DN m
m m

m
m

i
m

 









  in the LLE simulation. ND determines the 

highest order in the simulation. In this work, ND is set to 3. 

2) Thermal effect 

In the revised manuscript, the thermal effect can be incorporated through the thermo-optics 

effect. We bridge power dissipation in the microresonator with the cavity FSR, two factors 

experimentally measurable. Here, we show that these two terms are linearly dependent. The local 

temperature inside the microresonator is modelled as2, ௗఋ்

ௗ௧
ൌ െ𝛤 𝛿𝑇 ൅ 𝜂்𝑈௔, where the first term 

describes the thermal relaxation induced by the heat dissipation to environment and the second 

term represent the thermal heating caused by the intracavity field Ua. The total power dissipation 

Pdissipative, in proportional to Ua, includes intrinsic absorption, scattering and other dissipative 

processes. The temperature variation results in the change of FSR which is expressed as  

2
( ) ( ) ( ) ( )

( )

( ) ( )

eff dissipative
eff

T dissipative

c
FSR t n t T t P t

n t L

FSR t P t

  

 

   



 

In simulation, the power dissipation is the product of the damping rate and intracavity field. 

Then the thermal effect can be directly incorporated as the change of pump detuning and cavity 

FSR in the simulation.  

The dependence between δFSR and Pdissipative can be experimentally retrieved from a cavity 

resonance measurement using VNA and the power meter. In our measurement, we observed a  

2.28 GHz red-shift at 1569.3 nm with a power dissipation of  25.5 mW. The FSR variation is 

calculated to be  772.9 kHz. We estimate a βT of  30.31 MHz/W. 
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3) Avoided mode crossing 

To enable the generation of soliton crystals, we need to consider the avoided mode crossing 

(AMX) in the simulation. AMX is a result of the strong coupling between different kinds of modes, 

and it causes local resonance splitting. Here, the impact of resonance splitting is described by a 

local perturbation on the angular frequency of μth mode ∆ωμ, which is also denoted as the AMX 

strength. In previous literature, the perturbations due to mode crossings is introduced as a modal 

red-shift near the AMX point6. We follow this method in our simulations. This method works well  

4) Intracavity noise estimation 

 

Figure S2 | a, 40 μs-long AC-coupled microcombs signal. b, Transfer function we used to 

manipulate the RF spectral shape of added noise. c, Detuning fluctuation with reference to the 

g h 
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signal in (a). d, Comparison between simulated and experimental microcombs signals. e, RF 

spectrum of the experimental and simulated AC-coupled signals. The inset is the zoom-in of the 

RF spectrum with 0-0.2 GHz. f, I-dI/dt plane to further compare simulated and experimental 

microcombs signals. (g, h) The generation path of soliton crystals, from nonlinear numerical 

modeling. The dashed rectangles mark where spatial breathers occur. g, Simulation with estimated 

intracavity noise. h, Simulation without estimated intracavity noise. 

 

in modeling the breather dynamics in our work. Additional AMX modes are accessible by 

incorporation of more perturbed modes in simulation. We provide an example in the study of 

Feature i. 

The spatial breathing generally follows a limit cycle in the collective interaction plane, as 

shown in Fig. 3e of the main text. To study the robustness of spatial breathing with the presence 

of intracavity noise, we use the AC-coupled microcombs power to analyze the intracavity noise, 

as plotted in Fig. S2a. For a clear illustration, we attribute the influence of intracavity noise to the 

fluctuation of detuning. To generate the quasi-random detuning fluctuation that is close to the 

actual situation, we use a shape-filter function as a low-pass filter applying on the random noise. 

This process is conducted by lsim function in MATLAB 2017b. We compare the simulated and 

experimental AC-coupled microcombs noise and decide the shape-filter function to be 

G(s+1)2/(100s+1) 2, where s is the variable in lsim function, and G is the parameter to control peak-

to-peak fluctuation. Then we acquire the quasi-random detuning fluctuation as shown in Fig. S2c 

and consequently obtain the simulated AC-coupled power in Fig. S2d. Fig. S2e shows that the 

simulated and experimental AC-coupled microcombs noise match well, especially below 200 MHz. 

We also introduce a new angle to check the matching between the simulated and experimental AC-

coupled microcombs noise, as shown in Fig. 2f. The plots in the I-dI/dt plane also show the 

robustness of the spatial breathing. We add the estimated intracavity noise into our simulation on 
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intracavity patterns and find that we can still obtain a generation path of two-defect breathers. The 

generation paths with and without estimated intracavity noise are shown in Figs. S2g and S2h. 

 

Stability chat in the detuning-power space  

In the following sections, we simulate the stability chart of Kerr combs in the presence of AMX 

and third-order dispersion. Then we focus on the correspondence between simulations and 

experimental results of Features ⅰ, iv, and ⅳ in main text Figure 2c. The stability chart gives the 

allowed comb states at different fixed values of the laser detuning and input power. In this section, 

we consider a negative AMX strength of -60×2π MHz at the 48th mode. To check the allowed 

stable state, we adopt a common technique 2,6 that seeds the initial intracavity field with a given 

state and then checks the final states after many roundtrips. Here, we separately use a perfect 

soliton crystal and a soliton crystal with one defect as the initial state. The soliton spacing of both 

states is set to be 1/48 of the roundtrip time. We check the final state in the temporal domain and 

microwave domain after running for 20,000 roundtrips. As shown in Figure S3a, the yellow shade 

illustrates all allowed states and spatial breathers that exist in the meshed region. Figure S3b 

presents a deterministic generation path of 1-defect breather and 1-defect soliton crystal. 

 

Figure S3 | a, The stability chart of allowed states in detuning-power space. The yellow shade 

shows the region where frequency combs survive. The spatial breather without much noise can 

survive in the meshed region. b, Experimental optical spectra of generated microcombs from a 

a b 
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64.8 GHz Si3N4 microresonator using forward (blue-to-red) laser sweeping at 25.5 dBm input 

powers and 1593.1 nm pump wavelength. 

Feature i. highly repeatable generation paths & Feature ⅴ: The solitons move in different 

phases 

In principle, various soliton crystals may share a similar phase space. However, in the 

experiment, the generation path is nearly deterministic, where soliton crystal has a fixed defect 

number and defect spacing. This feature can be attributed to the synergy of AMX at multiple modes, 

which creates a background wave that allows specific states. To simply illustrate this point, we 

consider two modes, μ1 = 48 and μ2 = 47, with separate AMX strengths. We fix the AMX1 strength 

∆ωμ1 to be -60×2π MHz. The first variable is the AMX2 strength ∆ωμ2 which takes values of zero, 

-5×2π MHz and -10×2π MHz. The second variable is the defect spacing of the initial soliton crystal 

∆d, which ranges from 5/48 to 20/48 of the roundtrip. We run the simulation three times for each 

(∆ωμ2, ∆d) and check the final state after running for 5 million roundtrips. Fig. S4a and Fig. S4b 

plot the final intracavity field at ∆ωμ2 = -5×2π MHz, ∆d = 10/48 and ∆ωμ2 =0, ∆d = 10/48. At least 

one of the moving solitons reaches the peak amplitude in Fig. S4a and Fig. S4b. Apparently, the 

final states are quite different in the presence of AMX2. The two movable solitons near the defects 

no longer move in phase, and their spacing consequently is not an integer time of 1/48. We redefine 

the dynamic spacing ∆D between two movable solitons as the average of the distance between 

these two solitons when one of them reaches the amplitude peak. ∆D ranges from 0 to 24/48. The 

phase difference ∆φ between the two movable solitons ranges from zero to π. As shown in Table 

S2, the intracavity background wave determined by (∆ωμ2, ∆d) strongly affects the final state (∆D, 

∆φ). Most initial states converge to the same stable state (∆D1, ∆φ1). The exception marked by 

grey shade happens when ∆d < ∆D1.  
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Figure S4 | Normalized intracavity field after running 4 million roundtrips. 

 

Table S2 | The stable state (∆D, ∆φ) at different initial conditions (∆ωμ2, ∆d). 

∆ωμ2 ∆d 5/48 10/48 15/48 20/48 

0 (3.45/48, 0) (9.24/48, 0) (15/48, 0) (20/48, 0) 

-5×2π MHz (3.39/48, 0.36π) (6.58/48, 0.34π) (6.58/48, 0.34π) (6.58/48, 0.35π) 

-10×2π MHz (3.39/48, 0.30π) (3.39/48, 0.30π) (3.39/48, 0.30π) (3.39/48, 0.30π) 

 

Feature ⅳ. The modified spectra envelope near the prominent comb lines. 

The experimental spectrum of stationary soliton crystals with one defect is shown in Fig. S5a. 

Compared to the simulated spectrum shown in Fig. S5b, it looks quite different, especially near 

the prominent comb lines. We attribute this difference to multiple AMX points as AMX will 

introduce a local spectral enhancement (negative AMX strength) or reduction (positive AMX 

strength). If we consider a bunch of AMX points with respective AMX strengths, the spectrum 

turns to the one shown in Fig. S5c. The spectral envelope near the prominent comb lines is clearly 

modified compared to Fig. S5b. The rearrangement of soliton positions induced by dispersion also 

contributes to the spectral feature in Fig. S5a. 
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Figure S5 | a, Experimental spectrum of the stationary 1-defect soliton crystal. b, Simulated 

spectral envelope of the stationary 1-defect soliton crystal with one AMX point into consideration. 

c, The modified spectral envelope with multiple AMX points into consideration. 

 

Supplementary Note 3. Supporting numerical results 

Bright defect - brief introduction and explanation 

In the main text, we mainly discuss the dynamics of dark breathers, i.e., the spatial motion of 

solitons in soliton crystals with vacancy. Here we provide a brief introduction to the bright defect, 

i.e., the spatial motion of individual solitons in perfect soliton crystals (PSCs) via elastic collision. 

Fig. S6a illustrates the collective crossing of two soliton patterns with different group velocities. 

These two patterns may contain different soliton numbers and have different soliton spacings. The 

zoom-in of this collective crossing in Fig. S6b shows that the nearly independent crossing of two 

patterns is accomplished via elastic collisions of solitons. The optical spectrum in Fig. S6b is quite 

different from the spectra of soliton crystals, and the RF spectrum shows that this state is noisy. 

Fig. S6c shows the bright breather with two moving individual solitons. Following the above 

discussion, we still attribute this breather to the collective crossing of two different patterns. In Fig. 

S6d, pattern 1 turns to be PSC, and pattern 2 turns to be double bounded solitons. This collective 

behavior can be interpreted as a soliton moving in a PSC background. Here we use a previously 

introduced concept, meta-soliton, to name it. There exist prominent lines in the optical spectrum, 

just like the spectra of other soliton crystals. The RF spectrums show that the intracavity power is 

still noisy, and there is no breathing peak. We attribute this to the smooth intracavity change in 
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spatial breathing via elastic collisions. If pattern 2 turns to be a soliton crystal, the collective 

crossing turns to be a meta-soliton. As a result, the spectrum has two kinds of prominent lines with 

spacings of 36 FSRs and 4 FSRs respectively, which corresponds to two soliton crystals. The RF 

spectrum has periodic occurring dips. 

 

Figure S6 | a, 2D evolution trace of two different patterns with different group velocities. b, 

Schematic, optical spectrum, and RF spectrum of the soliton composites shown in (a). c, Schematic, 

optical spectrum, and RF spectrum of meta-soliton, i.e., bright-defect. d, Schematic, optical 

spectrum, and RF spectrum of meta-crystal, i.e., bright-defect crystal. 
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Illustration of chaotic soliton waveforms 

In the main text, we explain three types of mechanisms that cause chaotic waveforms. In 

Figure S7, we plot their schematics, optical spectra, and RF spectra. 

 

Figure S7 | Three types of chaotic waveforms. a-b, Chaotic waveforms caused by the unbalance 

between the AMX strength and TOD. a, Spatial breathers mixed with dense wavy undulations of 

the soliton intensity. The mixed breather has a high noise level below 2 GHz. b, Irregular soliton 

spatial motion and an uneven spectral envelope. The RF spectrum, however, only becomes noisy 

at some RF bands. c, Chaotic waveforms caused by the intracavity noise. The RF noise mainly 

comes from the fluctuation of intracavity intensity fluctuation. This chaotic waveform has a 

relatively smooth spectral envelope. The RF noise mainly occurs at low frequencies. 
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Supplementary Note 4. Supporting experimental results 

Auto-correlation measurement 

 

Figure S8 | Experimental optical spectrum (a, d, g), simulated optical spectral envelope (b, e, h), 

and experimental together with simulated auto-correlation (c, f, i) results for stationary soliton 

crystals with defects at different intracavity positions. Compared to the other main peaks, the 

higher intensity of the experimental peak at time = 0 ps is mainly caused by the amplified 

spontaneous emission from the EDFA in the auto-correlation set-up. 

Here we show the method to identify and confirm a soliton crystal with vacancies. The single 

vacancy shown in Figure S4 is easy to distinguish from other states. For double vacancies, if 

spectra have a clear pattern like Fig. S8a, we can directly count the arch-type pattern and determine 

what the state is. In Fig. S8a, we have seven arch-type patterns between two prominent lines, so 

the relative intracavity positions of two vacancies are determined to be 1/47 ×2π and (1+7+1)/47 

×2π. The simulated spectrum confirms our analysis. For a wider spacing or larger vacancy numbers, 
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this method is not applicable and one needs to generate the simulated spectra, finding the matching 

spectrum with our experiments. The initial identification can be further checked by auto-

correlation results. We use a band-pass filter to filter out the prominent line, and the remaining 

frequency comb provides direct information about defects, as we discussed in Fig. 3c of the main 

text. Fig. S8c, Fig. S8f, and Fig. S8i show the experimental and simulated auto-correlation results. 

These plots help to identify the states. 

 

Origin of AMX 

For the supplementary experiment, we used one device with the same geometry design as the one 

we previously used in the manuscript. A simple schematic setup is shown in Fig. S9a and Fig. S9b. 

We use a polarization beam splitter to polarize the input light to be TE. Then TM polarization is 

obtained via a half-wave plate as shown in Fig. S9b. We present the measured transmission curves 

of two polarizations in Fig. S9c. We only observed one AMX point near 1577 nm within the 

wavelength range from 1500 nm to 1600 nm. The AMX point of this device red-shifts about 10 

nm compared to the AMX point of the previous device. Two transmission curves form good 

correspondence, examining that the origin of AMX is the polarization. The slight mismatch 

between transmission curves of TE and TM is attributed to the precision of wavelength information 

returned from the Santec laser during the sweep.  

 

Figure S9 | a, Experimental set-up used for transmission measurement of TE mode. PBS:  

a 

 

b 
 

c 
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polarization beam splitter. b, Experimental set-up used for transmission measurement of TM 

mode. HWP: half-wave plate. c, The measured transmission curves of TE and TM modes near the 

AMX point. 
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