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Coupled cavities for motional ground-state cooling and strong optomechanical coupling
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Motional ground-state cooling and quantum-coherent manipulation of mesoscopic mechanical systems are
crucial goals in both fundamental physics and applied science. We demonstrate that the motional ground state
can be achieved in the highly unresolved sideband regime, through coherent auxiliary cavity interferences.
We further illustrate coherent strong Rabi coupling between indirectly coupled and individually optimized
mechanical resonators and optical cavities through effective dark-mode interaction. The proposed approach
provides a platform for quantum manipulation of mesoscopic mechanical devices beyond the resolved sideband
limit.
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I. INTRODUCTION

Preparing mechanical quantum states free of thermal noise
and with coherent manipulation is a crucial goal in cavity
optomechanics [1–6]. Recently significant efforts on motional
ground-state cooling have been mounted through dispersive
coupling [7–15], along with recent theoretical efforts on
dissipative coupling [16,17], dynamic cooling [18–22], atom-
assisted cooling [23–25], and external cavity cooling [26].
Quantum noise, however, sets a fundamental limit for back-
action cooling, and current dispersive ground-state cooling
approaches must rely on the resolved sideband limit [27,28],
requiring a cavity linewidth smaller than the single harmonic
oscillator level spacing. In parallel, interference phenomena
have been observed in optomechanical systems [29–32],
including a mechanical mode interacting with two optical
modes [33–39], with the application of coherent frequency
conversion [40,41] and dark-mode observations [42] in the
weak optomechanical coupling regime. For coherent exchange
between optical and mechanical modes [43–46], however, a
dramatically large optomechanical coupling rate exceeding
that of optical decoherence has been deemed necessary.
Conventionally, this poses a serious requirement for the optical
Q factor, i.e., the good-cavity and resolved sideband limits.

Recently some approaches on ground-state cooling in the
unresolved sideband regime [5] have been proposed. The
dissipative coupling mechanism [16,17], parameter modula-
tions [18–21], and hybrid system approaches [23–25,47] are
shown to be capable of loosening resolved sideband condi-
tions. However, experimental realization of these proposals
are still difficult. Here we propose a practical coupled cavity
system for both ground-state cooling of mechanical resonators
and strong optomechanical coupling in the highly unresolved
sideband condition, without requiring the coupled cavities in
the normal mode splitting regime. We harness the destructive
quantum interference in the all-optical domain of the coupled
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cavity system to achieve these goals. We find that ground-state
cooling is realizable for a large range of cavity decay rates
by coherently coupling to an auxiliary optical resonator or
mode, which does not directly interact with the mechanical
mode. We use effective dark-mode interaction model to
analytically describe the system and demonstrate quantum-
coherent coupling between individually optimized mechanical
resonators and optical cavities. This not only allows quantum
manipulation of massive mesoscopic mechanical devices with
low frequencies but also enables quantum effects in a general
platform with optimized optical and mechanical properties.

II. SYSTEM MODEL

Figure 1(a) illustrates two coupled optical cavities. The
first primary cavity supports the optical mode a1 (frequency
ω1, decay rate κ1) and the mechanical mode b (frequency ωm,
decay rate γ ) with single-photon optomechanical coupling
strength g, while the second auxiliary cavity supports the
optical mode a2 (frequency ω2, decay rate κ2) and does
not interact with the mechanical mode b. The interaction
between the two optical modes is denoted by the tunnel-
coupling parameter J [33,48–55]. The continuous-wave input
laser excites mode a1 with driving strength �. In the frame
rotating at input laser frequency ωin, the system Hamiltonian
reads H = −�1a

†
1a1 − �2a

†
2a2 + ωmb†b + ga

†
1a1(b† + b) +

(Ja
†
1a2 + J ∗a†

2a1) + (�∗a1 + �a
†
1), where �1 ≡ ωin − ω1

and �2 ≡ ωin − ω2 are the detunings. After linearization, the
multiphoton optomechanical coupling strength reads G ≡ gα1

with α1 the average intracavity field of mode a1.
The energy levels of the coupled system are depicted in

Fig. 1(b), where a series of three-level configurations can be
extracted. In Fig. 1(c), |1〉 represents a short-lived state with
high decay rate κ1, while |2〉 denotes a long-lived metastable
state with a small decay rate κ2. Destructive quantum interfer-
ence occurs between the two different excitation pathways,
from |0〉 → |1〉 directly and from |0〉 → |1〉 → |2〉 → |1〉
indirectly. This allows the heating process through the optical
field to be potentially suppressed. Meanwhile, the cooling
process is almost unaffected due to off-resonance interaction.
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FIG. 1. (Color online) (a) Fabry-Pérot equivalent of the current system with two coupled optical cavities. The first cavity is a low-Q cavity
and the second cavity is a high-Q cavity. The mechanical mode only interacts with the first cavity mode. (b) Energy level diagram of the
system in the displaced frame. |n1,n2,m〉 denotes the state of n1 photons in mode a1, n2 photons in mode a2, and m phonons in mode b. The
red (gray) double arrow denotes the coupling between states |n1 + 1,n2,m + 1〉 and |n1,n2 + 1,m + 1〉 with coupling strength J . (c) Energy
levels forming the three-level configuration.

III. COOLING THROUGH COUPLED CAVITY
INTERACTIONS BEYOND THE RESOLVED

SIDEBAND LIMIT

To demonstrate the cooling, we derive and calculate the
spectral density of the optical force using the quantum noise
approach (see Appendix B),

SFF (ω) = |G|2κ1

x2
ZPF

|χ (ω)|2
[

1 + κ2

κ1
|J |2|χ2(ω)|2

]
, (1)

where xZPF is the zero-point mechanical fluctuation, χ−1(ω) =
χ−1

1 (ω)+J 2χ2(ω), χ−1
1 (ω)= − i(ω+�′

1)+κ1/2, χ−1
2 (ω) =

−i(ω + �2) + κ2/2, and �′
1 = �1 + 2|G|2/ωm is the

optomechanical-coupling modified detuning. Without the
second optical mode a2, the noise spectrum reduces to
S

(J=0)
FF (ω) = |G|2κ1|χ1(ω)|2/x2

ZPF, a Lorentzian noise spec-
trum. In the presence of mode a2, SFF (ω) becomes a complex
lineshape due to interaction of the two optical modes. In
Figs. 2(a) and 2(b) we plot the noise spectrum SFF (ω)
in the highly unresolved sideband regime κ1/ωm = 104 by
examining various detunings �′

1. An asymmetric Fano (in-
terference of a resonant scattering with continuum back-
ground) [56] lineshape or a symmetric narrow electromagnet-
ically induced transparency (EIT, interference of two resonant
scattering or optical transitions) [57–60] lineshape appears
with sharp spectral change compared with the low-Q spectral
background. This greatly increases the asymmetry between
cooling and heating processes, with potential for enhanced
cooling rate A− ≡ SFF (ωm)x2

ZPF and suppressed heating rate
A+ ≡ SFF (−ωm)x2

ZPF. Here A− (A+) represents the rate for
absorbing (emitting) a phonon by the intracavity field, as
illustrated in Figs. 2(c) and 2(d). In the single-cavity highly

unresolved sideband regime, the cooling rate A− and heating
rate A+ are almost the same, with net cooling rate 	opt ≡
A− − A+ near zero [Figs. 2(c) and 2(e)]. In the presence of
the second optical mode a2, the quantum interference results
in large suppression of A+ while A− is almost unchanged,
leading to a very large net cooling rate 	opt [Figs. 2(d)
and 2(f)]. Moreover, we note that the classical cooling limit
nc

f (�γ nth/	opt) is largely lowered, relaxing the requirement
for initial cryogenic precooling; i.e., a higher bath thermal
phonon number nth can be tolerated. Furthermore, the quantum
limit n

q
f (�A+/	opt) is significantly reduced, breaking the

resolved sideband requirement of backaction cooling. For
the single-cavity case, the lowest achievable quantum limit,
obtained for detuning �′

1 = −κ1/2 in the unresolved sideband
condition, is given by κ1/(4ωm). In the coupled cavity approach
here, κ1 is no longer a limit on the final phonon occupancy
through cancellation of quantum backaction heating.

By solving the quantum master equation and employing
the covariance approach (see Appendix C), exact numerical
results are obtained, with an example time evolution of the
mean phonon number presented in Fig. 2(g). In the presence of
the second cavity the mean phonon occupancy is cooled from
an initial 104 to below 1 even for highly unresolved sideband
case κ1/ωm =104, while in the absence of the second cavity, the
mechanical motion cannot be cooled for such a large κ1/ωm.

Compared with the conventional single-cavity cooling
case, a significant difference here is that the input laser can
be blue detuned. In the quantum noise approach, the positive
slope of SFF (ω) is used for cooling while the negative
slope corresponds to heating. For single cavity setup, positive
slope of SFF (ω) only appears on the left wing of the
Lorentzian, while for coupled cavity system, the Fano or EIT
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FIG. 2. (Color online) (a) Optical force spectrum SFF (ω) for κ1/ωm = 104 and various �′
1. From top to bottom, �′

1 decreases from κ1 to
−κ1 with step 0.25κ1. (b) View of the central one-fortieth of the dashed-box region in panel (a). [(c), (d)] Frequency domain interpretation
of optomechanical interactions with a single cavity (c) and coupled cavities (d). The black vertical arrows denote the input laser, the gray
vertical arrows denote the scattering sidebands, and the curved red (blue) arrows denote the anti-Stokes (Stokes) scattering processes A− (A+).
[(e), (f)] Net optical cooling rate 	opt as functions of �′

1 and κ1 for a single cavity (e) and coupled cavities (f). (g) Exact numerical results
of the mean phonon number nb(t) for coupled cavities (red [gray] closed circles) with �′

1 = J 2/(�2 + ωm). The single-cavity case (J = 0)
with �′

1 = −κ1/2 and G/ωm = 10 is plotted for comparison (blue [gray] open circles). The shaded region denotes nb < 1. Other unspecified
parameters are κ1/ωm = 104, κ2/ωm = 1, �2/ωm = 0.5, J = √

κ1ωm, G = 0.5J , γ /ωm = 10−5, and nth = 104.

spectrum has rich structures. For example, the EIT lineshape
can be viewed as an inverse Lorentzian lineshape. In Fig. 3(a)
we plot exact numerical results of the steady-state final phonon
number nf as a function of two detunings �′

1 and �2 for fixed
intercavity interaction strength J . It shows optimal detunings
are approximately described by �′

1(�2 + ωm) = J 2 (blue
[gray] solid curve), calculated from Eq. (1) by maximizing
the cooling rate A−. In Figs. 3(b)–3(d) we plot nf = n

q
f + nc

f ,
the quantum part n

q
f and classical part nc

f as functions of
�′

1 and �2 for optimized intercavity interaction tuned by
J = √

�′
1(�2 + ωm) [along the blue [gray] solid curve in

Fig. 3(a)]. It shows that ground-state cooling can be achieved
for broad range of detunings. For the first cavity, this range
exceeds 5 × 104ωm; for the second cavity, significant cooling
can be realized in the span of −0.5 < �2/ωm < 1. In Fig. 3(c)
the quantum limit n

q
f minimum is obtained for large �′

1
and negative �2 (for Fano-like lineshapes), from a small
quantum backaction heating ∝SFF (−ωm). On the other hand,
the classical limit nc

f minimum is achieved for small �′
1

and positive �2 near �2/ωm ∼ 1 (for EIT-like lineshapes),
which leads to a large cooling rate ∝SFF (ωm). The balance
between these two limits lead to an optimal �′

1/κ1 ∼ 3 and
�2/ωm ∼ 0.3 for the parameters in Fig. 3(b).

Figures 3(e) and 3(f) demonstrates the broad parameter
space for ground-state cooling in the unresolved sideband

limit. With optimized couplings J and G, the final phonon
number nf for different ratios κ1/ωm up to 106 are almost the
same, which reveals that, arising from the unique interferences,
the first cavity decay only acts as a background and has negligi-
ble influence on cooling for such large optical damping case.
Figure 3(f) shows that for κ2/ωm = 0.5, the tolerable initial
bath phonon number nth is up to 3 × 104 (green [gray] tri-
angles), corresponding to T = 288 K for ωm/2π = 200 MHz,
readily available in physical measurements.

IV. EFFECTIVE DARK-MODE INTERACTIONS:
ANALYTICAL COOLING LIMITS, STRONG COUPLING,

AND DYNAMICAL STABILITY

A. Analytical cooling limits

To gain more physical insights into the coupled cavity
optomechanical system, we analyze the eigenmodes of the
system. For large detuning, two of the system’s eigenmodes
are linear combinations of the mechanical mode and the
high-Q cavity mode a2; i.e., they are dark modes with
respect to the low-Q cavity mode a1. This dark-mode doublet
can be considered as a result of the effective interaction
between the mechanical mode and the high-Q mode a2. The
interaction is concisely described by the effective parameters
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FIG. 3. (Color online) (a) Exact numerical results of the fi-
nal phonon number nf as functions of �′

1/ωm and �2/ωm for
J/ωm = 100, G = 0.5J . The blue (gray) curve corresponds to
�′

1(�2 + ωm) = J 2. [(b)–(d)] Final phonon number nf (b), its
quantum part nq

f (c), and its classical part nc
f (d) as functions of �′

1/ωm

and �2/ωm for J = √
�′

1(�2 + ωm) and G = 0.5J . In panels (a)–(d),
κ1/ωm = 104 and nth = 104. The black curves denote that the phonon
number is 1. [(e), (f)] Final phonon number nf as a function of κ2/ωm

(e) and nth (f). In panel (e), nth = 104, κ1/ωm =106 (red [gray] closed
circles), 104 (blue [gray] solid curve), and 102 (black dashed curve);
in panel (f), κ1/ωm = 104, κ2/ωm = 2 (red [gray] closed circles), 1
(blue [gray] open circles), and 0.5 (green [gray] triangles). Other
unspecified parameters are J = √

κ1ωm, G = 0.5J , �2/ωm = 0.5,
�′

1 = J 2/(�2 + ωm), and γ /ωm = 10−5. The shaded regions denote
nf < 1.

(see Appendix D)

|Geff| = η|G|, κeff = κ2 + η2κ1, �eff = �2 − η2�′
1,

(2)

where η is the scaled intercavity coupling strength given by

η = |J |
|�′

1|
(3)

for large detuning |�′
1| > κ1. Note that mode a2 does not

directly interact with mode b, and the indirect effective
interaction is mediated by mode a1 [Fig. 4(a) inset]. It reveals
from Eq. (2) that the effective detuning �eff is a combination
of �′

1 and �2, uniquely allowing blue-detuned �′
1 and �2

to obtain a red-detuned �eff . With the effective dark-mode
interaction model, the cooling limits can be analytically
described by (see Appendix D)

neff
f = γ nth

	eff
+ κ2

eff

16ω2
m

, (4)

where 	eff = 4|Geff|2/κeff is the effective cooling rate. It
reveals that ground-state cooling requires κ2 + η2κ1 � 4ωm,
only slightly dependent on the first cavity decay rate κ1 for
η � 1. The ultimate limitation is the second cavity decay rate
κ2, which should be comparable to ωm. Notably, since b is not
directly coupled to a2, the optical and mechanical properties
of the whole system can be optimized individually, without
simultaneous requirements in the same resonator. Particularly,
the second cavity does not need to support any mechanical
modes, and the only requirement is relatively high optical Q.

FIG. 4. (Color online) Exact numerical results of the mean
phonon number nb(t) (red [gray] closed circles), mean photon num-
bers n2(t) (blue [gray] open circles), and n1(t) (green [gray] triangles)
for κ1/ωm = 104, J/ωm = 200, and G = 0.5J . (a) κ2/ωm = 0.01;
(b) κ2/ωm = 0.1. The red [gray] solid curves are the analytical
result for nb(t). Inset of panel (a): Schematic energy diagram of
the effective dark-mode interaction. (c) Parameters G/ωm (red [gray]
dashed curve), κ1/ωm (blue [gray] dashed curve), Geff/ωm (red [gray]
solid curve), and κeff/ωm (blue [gray] solid curve) as functions
of η. The shaded region denotes Geff > κeff . The gray dotted line
denotes the value of 1 in the unit of ωm. (d) Dynamical stable
regions for coupled cavities with J/ωm = 200 (below the red [gray]
solid curve) and J/ωm = 100 (below the blue [gray] dashed curve),
and single-cavity case (below the gray dash-dotted curve). Other
unspecified parameters are �2/ωm = −0.5, �′

1 = J 2/(�2 + ωm),
γ /ωm = 10−5, and nth = 104. This parameter regime can be reached,
for example, in coupled microtoroids with ωm = 100 MHz, J =
20 GHz, κ2 = 1 ∼ 10 MHz [33].

B. Strong coupling

The current system also enables strong coupling between
mode a2 and mode b even when mode a1 is highly dissipa-
tive, with the similar mechanism of strong-coupling cavity
quantum electrodynamics in highly dissipative cavities [61].
Figures 4(a) and 4(b) shows that Rabi oscillation occurs for
modes a2 and b with κ1/ωm = 104. It reveals reversible energy
exchange between these two indirectly coupled modes, with
decoherence time much longer than the coherent exchange
period. Note that the analytical results (red [gray] solid curve)
calculated from the effective dark-mode interaction model (see
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Appendix D) agree well with the exact numerical results. In
this case the effective strong coupling condition |Geff| > κeff

is satisfied. As shown in Eq. (2) and Fig. 4(c), for η � 1,
both the effective coupling strength |Geff| and effective cavity
decay rate κeff are smaller than the original |G| and κ1,
respectively. However, κeff decreases more rapidly than |Geff|
for decreasing η. Therefore, strong coupling regime can be
reached, corresponding to the shaded region in Fig. 4(c). From
Eq. (2), it can be obtained that the strong coupling condition is
relaxed to |G| > 4κ1κ2. For parameters examined in Fig. 4(a),
we obtain η = 2.5 × 10−3, Geff/ωm = 0.25, κeff/ωm = 0.07,
and �eff/ωm = −1. With nth = 2 × 104, we find Geff >

(κeff,γ nth), which is in the quantum-coherent coupling regime.
This establishes an efficient quantum interface between the
mechanical resonator and the photons and allows the control
of the mechanical quantum states.

C. Dynamical stability

To examine the dynamical stability of the coupled-mode
optomechanical interactions, we calculate the stable regions
through the Routh-Hurwitz criterion (see Appendix E) as
presented in Fig. 4(d). It reveals that large optomechanical
coupling G can be allowed to keep the system in the stable
region, and it is more stable than the single cavity case,
because the intercavity coupling provides additional restoring
force to the mechanical oscillator. With the large allowed
|G|, the effective coupling strength |Geff| far exceeds the
effective decay rate κeff , bringing the system deeply in the
strong coupling regime.

V. CONCLUSIONS

In summary, we have proposed the harnessing of coupled
cavity interferences and dark-mode interaction for ground-
state cooling of mechanical resonators and strong quantum-
coherent optomechanical coupling beyond the resolved side-
band limit. Through destructive quantum interferences, we
demonstrate that the coupled cavity system not only signif-
icantly accelerates the cooling process but also dramatically
reduces the cooling limits. Ground-state cooling is achievable
for large cavity decay rate κ1 when the coupled auxiliary
cavity has modest decay rate κ2 ∼ ωm. The auxiliary cavity
mode is not directly coupled to the mechanical mode, allowing
individual optimization of the optical and mechanical proper-
ties. Therefore, the first cavity only needs to possess good
mechanical properties while the second cavity only needs
to possess relatively high optical Q. Unlike the dissipative
coupling mechanism [16,17], we use pure dispersive coupling
and all-optical EIT effect to realize destructive interference,
and the interference comes from two resonant contributions.
Note that the cavity decay rate in our case is the total decay rate
where the intrinsic decay rate has been taken into account. This
is important because in real experiments the external decay rate
is usually tunable while the intrinsic cavity decay rate is the
fundamental limitation. Unlike the proposal using two-level
atomic ensembles [23] and precooled atoms [25], our approach
makes use of pure cavity optomechanical cooling effect
arising from dynamical backaction, and it is quite practical
in experimental realization, for instance, in a photonic crystal

cavity system with highly unresolved sideband condition [62].
With dark-mode interaction in the strong coupling regime, the
coupled cavity system allows for quantum-coherent coupling
between mechanical mode and auxiliary cavity modes, with
potential for quantum network applications [63–65]. This
system establishes an efficient quantum interface between
indirectly coupled and individually optimized mechanical
resonators and optical cavities, which opens up the possibility
for application of cavity quantum optomechanics beyond the
resolved sideband regime, addressing the restricted experi-
mental bounds at present.
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APPENDIX A: SYSTEM HAMILTONIAN AND QUANTUM
LANGEVIN EQUATIONS

The Hamiltonian of the coupled cavity system is given by

H = Hfree + Ho−m + Ho−o + Hdrive. (A1)

The first term Hfree represents the free Hamiltonian of the
optical and mechanical modes, described by Hfree = ω1a

†
1a1 +

ω2a
†
2a2 + ωmb†b, where ω1, ω2, and ωm are the resonance

frequencies of the first (or primary) cavity mode a1, the second
(or auxiliary) cavity mode a2, and the mechanical mode b. The
second term of Eq. (A1) (Ho−m) describes the optomechanical
interaction between the first cavity mode a1 and the mechanical
mode b, which is written as Ho−m = ga

†
1a1(b† + b) [66],

where g represents the single-photon optomechanical coupling
strength. The third term of Eq. (A1) (Ho−o) describes the
coupling between the two cavity modes a1 and a2, with the
Hamiltonian

Ho−o = Ja
†
1a2 + J ∗a†

2a1, (A2)

where J describes the interaction strength [33,48–55]. The
last term of Eq. (A1) (Hdrive) describes the optical driv-
ing. Assume that the system is excited through simulta-
neous driving of the two cavity modes with the same
input laser frequency ωin. In this case the Hamiltonian is
given by Hdrive = (�∗

1e
iωint a1 + �1e

−iωint a
†
1) + (�∗

2e
iωint a2 +

�2e
−iωint a

†
2), where �1 = √

κex
1 P1/(�ωin)eiφ1 and �2 =√

κex
2 P2/(�ωin)eiφ2 denote the driving strengths, P1 (P2) is

the input power and φ1 (φ2) is the initial phase for the first
(second) input laser, and κex

1 (κex
2 ) is the input-cavity coupling

rate for mode a1 (a2). Alternatively, the system can also be
excited through single-mode driving of either cavity mode,
corresponding to �1 = 0 or �2 = 0. This only affects the mean
intracavity field of the two cavity modes and the equilibrium
position of the mechanical resonator, while the quantum
fluctuations and thereby the linearized quantum Langevin
equations (see below) remain the same.
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In the frame rotating at the input laser frequency ωin,
the Hamiltonian is written as H = −�1a

†
1a1 − �2a

†
2a2 +

ωmb†b + ga
†
1a1(b† + b) + (Ja

†
1a2 + J ∗a†

2a1) + (�∗
1a1 +

�1a
†
1) + (�∗

2a2 + �2a
†
2), where �1 ≡ ωin − ω1, �2 ≡ ωin −

ω2 are the detunings.
The quantum Langevin equations are given by

ȧ1 =
(

i�1 − κ1

2

)
a1 − iga1(b† + b)

−iJ a2 − i�1 − √
κ1ain,1, (A3)

ȧ2 =
(

i�2 − κ2

2

)
a2 − iJ ∗a1 − i�2−√

κ2ain,2, (A4)

ḃ =
(

−iωm − γ

2

)
b − iga

†
1a1 − √

γ bin, (A5)

where κ1 ≡ ω1/Q1, κ2 ≡ ω2/Q2, and γ ≡ ωm/Qm are the
decay rates of the modes a1, a2, and b, respectively; Q1,
Q2, and Qm are the corresponding quality factors; and
ain,1, ain,2, and bin are the corresponding noise operators,
which satisfy 〈ain,1(t)a†

in,1(t ′)〉 = 〈ain,2(t)a†
in,2(t ′)〉 = δ(t −

t ′), 〈a†
in,1(t)ain,1(t ′)〉 = 〈a†

in,2(t)ain,2(t ′)〉 = 0, 〈bin(t)b†in(t ′)〉 =
(nth + 1)δ(t − t ′), and 〈b†in(t)bin(t ′)〉 = nthδ(t − t ′). Here nth

is the thermal phonon number given by n−1
th = exp( �ωm

kBT
) − 1,

where T is the environmental temperature and kB is Boltzmann
constant.

Now we apply a displacement transformation a1 → α1 +
a1, a2 → α2 + a2, b → β + b, where α1, α2, and β are
c numbers denoting the displacements of the optical and
mechanical modes. The quantum Langevin equations are
rewritten as

ȧ1 =
(

i�′
1 − κ1

2

)
a1 − igα1(b† + b)

−iga1(b† + b) − iJ a2−√
κ1ain,1, (A6)

ȧ2 =
(

i�2 − κ2

2

)
a2 − iJ ∗a1−√

κ2ain,2, (A7)

ḃ =
(

− iωm − γ

2

)
b − ig

(
α∗

1a1 + α1a
†
1

)

− iga
†
1a1 − √

γ bin, (A8)

with the optomechanical-coupling modified detuning �′
1 =

�1 − g(β∗+β). Under strong driving conditions, the nonlinear
terms iga1(b† + b) and iga

†
1a1 in the above equations are

neglected. Then the quantum Langevin equations become
linearized, and the linearized system Hamiltonian can be
extracted as

HL = −�′
1a

†
1a1 − �2a

†
2a2 + ωmb†b

+ (Ga
†
1 + G∗a1)(b† + b) + (Ja

†
1a2 + J ∗a†

2a1), (A9)

where G ≡ gα1 is the coherent intracavity-field-enhanced
optomechanical coupling strength.

APPENDIX B: QUANTUM NOISE APPROACH

From Eq. (A9) we obtain the optical force acting on the me-
chanical resonator F = −(G∗a1 + Ga

†
1)/xZPF, where xZPF ≡√

�/(2meffωm) is the zero-point fluctuation and meff is the
effective mass of the mechanical resonator. The quantum noise
spectrum of the optical force is given by the Fourier transform
of the autocorrelation function SFF (ω) ≡ ∫

dteiωt 〈F (t)F (0)〉.
In the frequency domain, the operators ã1(ω), ã2(ω), and

b̃(ω) obey

−iωã1(ω) =
(

i�′
1 − κ1

2

)
ã1(ω) − iG[b̃†(ω) + b̃(ω)]

−iJ ã2(ω)−√
κ1ãin,1(ω), (B1)

−iωã2(ω) =
(

i�2 − κ2

2

)
ã2(ω) − iJ ∗ã1(ω) − √

κ2ãin,2(ω),

(B2)

−iωb̃(ω) =
(

−iωm − γ

2

)
b̃(ω) − i[G∗ã1(ω) + Gã

†
1(ω)]

−√
γ b̃in(ω). (B3)

Then we obtain

b̃ (ω) �
√

γ b̃in (ω) − i
√

κ1A1 (ω) − √
κ2A2 (ω)

iω − i [ωm+� (ω)] − γ

2

, (B4)

where we have neglected b̃†(ω) terms and

A1(ω) = G∗χ (ω)ãin,1(ω) + Gχ∗(−ω)ã†
in,1(ω), (B5)

A2(ω) = J [G∗χ (ω)χ2(ω)ãin,2(ω)

−Gχ∗(−ω)χ∗
2 (−ω)ã†

in2(ω)], (B6)

�(ω) = −i|G|2[χ (ω) − χ∗(−ω)], (B7)

χ (ω) = 1
1

χ1(ω) + |J |2χ2(ω)
, (B8)

χ1(ω) = 1

−i(ω + �′
1) + κ1

2

, (B9)

χ2(ω) = 1

−i(ω + �2) + κ2
2

, (B10)

χm(ω) = 1

−i(ω − ωm) + γ

2

, (B11)

where A1,2(ω) accounts for the contribution of the first and sec-
ond cavities; �(ω) represents the optomechanical self energy;
χ (ω) is the total response function of the coupled cavities;
and χ1(ω), χ2(ω), and χm(ω) are the response functions of
the first cavity, the second cavity, and the mechanical mode.
The optomechanical coupling-induced mechanical frequency
shift δωm and damping 	opt are given by δωm= Re�(ωm) and
	opt= −2 Im�(ωm).
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By using F (ω) = −[G∗a1(ω) + Ga
†
1(ω)]/xZPF, the spectral

density of the optical force is obtained as

SFF (ω) = |Gχ (ω)|2
x2

ZPF

[κ1 + κ2|J |2|χ2(ω)|2]. (B12)

This equation corresponds to Eq. (1) of the main text.

APPENDIX C: QUANTUM MASTER EQUATION AND
COVARIANCE APPROACH

The quantum master equation of the system reads

ρ̇ = i[ρ,HL] + κ1

2
(2a1ρa

†
1 − a

†
1a1ρ − ρa

†
1a1)

+ κ2

2
(2a2ρa

†
2 − a

†
2a2ρ − ρa

†
2a2)

+ γ

2
(nth + 1)(2bρb† − b†bρ − ρb

†
1b1)

+ γ

2
nth(2b†ρb − bb†ρ − ρbb†), (C1)

where HL is the linearized system Hamiltonian given by
Eq. (A9).

To calculate time evolutions of the mean phonon number
nb(t) = 〈b†b〉(t), we need to determine the mean values of
all the time-dependent second-order moments, 〈a†

1a1〉, 〈a†
2a2〉,

〈b†b〉, 〈a†
1a2〉, 〈a†

1b〉, 〈a†
2b〉, 〈a1a2〉, 〈a1b〉, 〈a2b〉, 〈a2

1〉, 〈a2
2〉,

and 〈b2〉, which are determined by a linear system of ordinary
differential equations ∂t 〈ôi ôj 〉 = Tr(ρ̇ôi ôj ) = ∑

k,l ηk,l〈ôkôl〉,
where ôi , ôj , ôk , and ôl are one of the operators a1, a2, b, a†

1, a†
2,

and b
†
1, and ηk,l are the corresponding coefficients determined

by Eq. (C1) [22]. Initially, the mean phonon number is equal to
the bath thermal phonon number, i.e., 〈b†b〉(t = 0) = nth, and
other second-order moments are zero. The numerical results
in the main text are obtained by solving these differential
equations.

APPENDIX D: EFFECTIVE DARK-MODE INTERACTION

The second cavity mode a2 does not directly interact
with the mechanical mode b. However, there exists indirect
interaction between them, which is mediated by the first cavity
mode a1. From Eqs. (A6)–(A8), after neglecting the nonlinear
terms, we obtain the formally integrated form for the operators
as

a1(t) = a1(0) exp

(
i�′

1t − κ1

2
t

)
+ exp

(
i�′

1t − κ1

2
t

)

×
∫ t

0
[−iGb(τ ) − iGb†(τ ) − iJ a2(τ ) − √

κ1ain,1(τ )]

× exp
(
−i�1τ + κ1

2
τ
)

dτ, (D1)

a2(t) = a2(0) exp
(
i�2t − κ2

2
t
)

+ exp
(
i�2t − κ2

2
t
)

×
∫ t

0

[−iJ ∗a1(τ ) − √
κ2ain,2(τ )

]
× exp

(
−i�2τ + κ2

2
τ
)

dτ, (D2)

b(t) = b(0) exp
(
−iωmt − γ

2
t
)

+ exp
(
−iωmt − γ

2
t
)

×
∫ t

0
[−iG∗a1(τ ) − iGa

†
1(τ ) − √

γ bin(τ )]

× exp
(
iωmτ+γ

2
τ
)

dτ, (D3)

By considering the effects of mode a1 as perturbations, and
solving Eqs. (D2) and (D3), we obtain

a2(t) � a2(0) exp

(
i�2t − κ2

2
t

)
+ Ain,2(t), (D4)

b(t) � b(0) exp

(
−iωmt − γ

2
t

)
+ B in(t), (D5)

where Ain,2(t) and B in(t) denote the noise terms. By plugging
Eqs. (D4) and (D5) into Eq. (D1) and with the condition
|�1| 
 |�2|, κ1 
 (κ2,γ ), we obtain

a1(t) � − iG
[
b(t) + b†(t)

]
−i�1 + κ1

2

− iJ a2(t)

−i�1 + κ1
2

+ a1(0) exp
(
i�1t − κ1

2
t
)

+ Ain,1(t), (D6)

where the noise term is denoted by Ain,1(t). By neglecting
the fast decaying term containing exp(−κ1t/2) and plugging
the expression back to Eqs. (A7) and (A8), we compare the
equations with the effective single-cavity case and obtain

i�2 − κ2

2
+ |J |2

i�′
1 − κ1

2

←→ i�eff − κeff

2
, (D7)∣∣∣∣ J ∗G

i�′
1 − κ1

2

∣∣∣∣ ←→ |Geff|, (D8)

where Geff is the effective coupling strength, κeff is the
effective decay rate of the optical cavity mode, and �eff is
the effective detuning between the input light and the optical
resonance. Then the indirect interaction between mode a2

and mode b can be described by the effective parameters
|Geff| = η|G|, κeff = κ2 + η2κ1 and �eff = �2 − η2�′

1 with
η = |J |/[�′2

1 + (κ1/2)2]1/2 � |J |/|�′
1| for |�′

1| > κ1. These
correspond to Eqs. (2) and (3) of the main text.

From these effective parameters, we obtain the effective
spectral density of optical force as

Seff
FF (ω) = κeff |Geffχeff (ω)|2

x2
ZPF

, (D9)

where we have defined the effective response function

χeff (ω) = 1

−i(ω + �eff) + κeff
2

. (D10)

In Fig. 5 the comparison between Seff
FF (ω) [Eq. (B12)] and

Seff
FF (ω) [Eq. (D9)] is displayed. It reveals that for the region

near the Fano resonance, the effective optical force spectrum
is a good approximation.

In the effective resolved sideband limit (ωm > κeff) and
weak coupling regime (κeff > Geff), the cooling limit reads

neff
f = γ nth

	eff
+ κ2

eff

16ω2
m

, (D11)

where 	eff = 4|Geff|2/κeff is the effective cooling rate.
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FIG. 5. (Color online) Optical force spectrum SFF (ω) (blue
[gray] dots) and Seff

FF (ω) (red [gray] solid curve) for κ1/ωm =
104, κ2/ωm = 1, �2/ωm = 0.5, J/ωm = 200, G = 0.5J , �′

1 =
|J |2/(�2 + ωm), γ /ωm = 10−5, and nth = 104. The inset is a closeup
view of the Fano region.

After eliminating mode a1, the effective system Hamilto-
nian is given by

Heff = −�effa
†
2a2 + ωmb†b + (Ga

†
2 + G

∗
a2)(b + b†).

(D12)
Then the quantum master equation reads

ρ̇ = i[ρ,Heff] + κeff

2
(2a2ρa

†
2 − a

†
2a2ρ − ρa

†
2a2)

+ γ

2
(nth + 1)(2bρb† − b†bρ − ρb†b)

+ γ

2
nth(2b†ρb − bb†ρ − ρbb†). (D13)

By solving the differential equations of all the second-order
moments relevant with modes a2 and b [22,67], we obtain the
time evolution of the mean phonon number in the effective
strong coupling regime (|Geff| > κeff) as

nb(t) � nthexp
(
−κeff

2
t
)

cos2(Geff t)

+ γ nth

κeff
+ 8 |Geff|2 + κ2

eff

16ω2
m

. (D14)

The red (gray) dash-dotted curves in Figs. 4(a) and 4(b)
of the main text are plotted according to this expression.

Note that nb(t → ∞) = γ nth/κeff + (8|Geff|2 + κ2
eff)/(16ω2

m)
corresponds to the cooling limit in the strong coupling
regime. In our plots nth 
 nb(t → ∞), so in Eq. (D14) we
just simply add nb(t → ∞) to the damped oscillation parts
nthexp(−κeff t/2) cos2(Geff t). In this case nb(0) � nth can be
satisfied in Eq. (D14).

APPENDIX E: DYNAMICAL STABILITY CONDITION

For the single-cavity case, the dynamical stability condition
is given by

�′
1

[
16�′

1 |G|2 + (
4�′2

1 + κ2
1

)
ωm

]
< 0, (E1)

which is calculated from the Routh-Hurwitz criterion [68]. In
the resolved sideband regime, for �′

1 = −κ1/2, inequality (E1)
reduces to

|G|2 <
κ1ωm

4
. (E2)

For the coupled cavity case, with the now derived ef-
fective parameters, the dynamical stability condition reads
�eff[16�eff|Geff|2 + (4�2

eff + κ2
eff)ωm] < 0. Assume that the

effective optomechanical interaction is in the resolved side-
band regime, with the detuning �eff = −ωm, the stability
condition reduces to |Geff|2 < ω2

m/4 + κ2
eff/16, which corre-

sponds to

|G|2 <
4ω2

m + (κ2 + η2κ1)2

16η2
. (E3)

Define the right-hand side of the inequality as S, and then the
minimum value of S is given by

Smin = κ1

4

√
ω2

m+κ2
2

4
+ κ1κ2

8
, (E4)

which is obtained when η = ηmin ≡ 4

√
4ω2

m+κ2
2 /

√
κ1. It re-

veals that, for the coupled cavity system, even in the worst case
it allows larger optomechanical coupling to keep the system in
the stable region, compared with the single cavity system for
�′

1 = −κ1/2 [inequality (E2)]. In Fig. 4(d) of the main text,
the gray shaded region is plotted according to inequality (E2),
and the blue and red shaded regions denote inequality (E3) for
J/ωm = 100 and 200, respectively.
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A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Laser

033818-8

http://dx.doi.org/10.1103/PhysRevLett.94.223902
http://dx.doi.org/10.1103/PhysRevLett.94.223902
http://dx.doi.org/10.1103/PhysRevLett.94.223902
http://dx.doi.org/10.1103/PhysRevLett.94.223902
http://dx.doi.org/10.1103/PhysRevLett.95.033901
http://dx.doi.org/10.1103/PhysRevLett.95.033901
http://dx.doi.org/10.1103/PhysRevLett.95.033901
http://dx.doi.org/10.1103/PhysRevLett.95.033901
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1126/science.1156032
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1103/RevModPhys.86.1391
http://dx.doi.org/10.1088/1674-1056/22/11/114213
http://dx.doi.org/10.1088/1674-1056/22/11/114213
http://dx.doi.org/10.1088/1674-1056/22/11/114213
http://dx.doi.org/10.1088/1674-1056/22/11/114213
http://dx.doi.org/10.1093/nsr/nwu050
http://dx.doi.org/10.1093/nsr/nwu050
http://dx.doi.org/10.1093/nsr/nwu050
http://dx.doi.org/10.1038/nature10261
http://dx.doi.org/10.1038/nature10261
http://dx.doi.org/10.1038/nature10261
http://dx.doi.org/10.1038/nature10261


COUPLED CAVITIES FOR MOTIONAL GROUND-STATE . . . PHYSICAL REVIEW A 91, 033818 (2015)

cooling of a nanomechanical oscillator into its quantum ground
state, Nature (London) 478, 89 (2011).
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