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Abstract. In this paper, a scalable photonic crystal cavity array, in which
single embedded quantum dots (QDs) are coherently interacting, is studied
theoretically. Firstly, we examine the spectral character and optical delay brought
about by the coupled cavities interacting with single QDs, in an optical analogue
to electromagnetically induced transparency. Secondly, we then examine the
usability of this coupled QD–cavity system for quantum phase gate operation
and our numerical examples suggest that a two-qubit system with fidelity above
0.99 and photon loss below 0.04 is possible.
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1. Introduction

Cavity quantum electrodynamics (QED) describes a few atoms strongly coupling to quantized
electromagnetic fields inside an optical cavity. Up to now, it is one of a few experimentally
realizable systems in which the intrinsic quantum mechanical coupling dominates losses due to
dissipation, providing an almost ideal system that allows the quantitative study of a dynamical
open quantum system under continuous observation (for a review, see [1] and references
therein). Over the past few years, theoretical and experimental studies have mainly focused
on a single cavity interacting with atoms, and tremendous progress has been made ranging
from strongly trapping single atoms [2] and deterministic generation of single-photon states [3],
to observation of atom–photon quantum entanglement [4] and implementation of quantum
communication protocols [5].

For more applications, current interest lies in the coherent interaction between distant
cavities. The coherent interaction of cavity arrays has been studied as an optical analogue to
electromagnetically induced transparency (EIT) in both theory [6, 7] and experiment [8, 9].
Coupled cavities can be utilized for coherent optical information storage, because they provide
almost lossless guiding and coupling of light pulses at slow group velocities. When dopants such
as atoms or quantum dots (QDs) interact with these cavities, the spatially separated cavities
have been proposed for implementing quantum logic and constructing quantum networks
[10, 11]. Recent studies also show a strong photon-blockade regime and photonic Mott insulator
state [12], where the two-dimensional hybrid system undergoes a characteristic Mott insulator-
to-superfluid quantum-phase transition at zero temperature [13]. Recently, it was shown that
coupled cavities can also model an anisotropic Heisenberg spin-1/2 lattice in an external
magnetic field [14]. The character of a coupled cavity configuration has also been studied using
the photon Green function [15, 16].

2. Theoretical model

In this paper, using transmission theory, we study coherent interactions in a cavity array that
includes N cavity–QD subsystems, with indirect coupling between adjacent cavities through
a waveguide (figure 1). Recent experimental efforts have reported remarkable progress in
solid-state cavities, such as ultra-high quality factors [17]–[19], observation of strong coupling
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Figure 1. (a) Example scanning electronic micrograph of periodic
waveguide–resonator structure containing N side-coupled cavities (h-polarized)
at a distance L. (b) The jth QD–cavity subsystem.

and vacuum Rabi splitting [20, 21], transfer of single photons between two cavities [22],
deterministic positioning of a cavity mode with respect to a QD [23], and controlling cavity
reflectivity with a single QD [24].

First, we investigate a subsystem in which a single cavity interacts with an isolated QD.
Here for simplicity we suppose that only a single resonance mode (h-polarized) is present in
the cavity, although two-mode cavity–QD interactions have been considered earlier [25]. The
cavity–QD–waveguide subsystem has mirror-plane symmetry, so that the mode is even with
respect to the mirror plane. We can easily obtain the Heisenberg equations of motion [26, 27]

dĉ j

dt
= −i

[
ĉ j , H j

]
− 0 j ĉ j + i

√
κ1, j

(
â(j)

in +b̂(j)
in

)
, (1)

dσ̂−, j

dt
= −i

[
σ̂−, j , H j

]
− γ j σ̂−, j +

√
γ ′

j σ̂
′

j , (2)

where c j is the bosonic annihilation operator of the jth cavity mode with resonant frequency
ωc, j . â(j)

in (b̂(j)
in ) and â(j)

out (b̂
(j)
out) describe the input and output fields in the left (right) port,

respectively, with standard input–output relations â(j)
out = b̂(j)

in +
√

κ1, j ĉ j and b̂(j)
out = â(j)

in +
√

κ1, j ĉ j .
20 j represents total cavity decay with 0 j = (κ0, j + 2κ1, j)/2, where κ0, j is the intrinsic cavity
decay rate and κ1, j the external cavity decay rate. σ̂−(+), j is the descending (ascending) operator
of the interacting two-level QD with transition frequency ωr, j . The variable γ j is the total
decay rate of the QD, including the spontaneous decay (at rate γs) and dephasing (at rate
γp) in the excited state |e〉; H j is the subsystem Hamiltonian: H j = ωc, j ĉ

†
j ĉ j + ωr, j σ̂+, j σ̂−, j +[

g j (Er)σ̂ +, j ĉ j + h.c.
]
, where g j (Er) is the coupling strength between the cavity mode and the

dipolar transition |g〉 ↔ |e〉. The variable σ̂ ′

j is the vacuum noise operator associated with the
decay rate γ ′

j .
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In the weak excitation limit (excited by a weak monochromatic field or a single-photon
pulse with frequency ω), by omitting the term that concerns the Langevin noises [27], the motion
equations can be solved, with the transport relation in the frequency domain(

b̂(j)
in (ω)

b̂(j)
out(ω)

)
= T j

(
â(j)

in (ω)

â(j)
out(ω)

)
. (3)

Here the transport matrix reads

T j =
1

α j + κ1, j − 0 j

(
−κ1, j α j − 0 j

α j − 0 j + 2κ1, j κ1, j

)
, (4)

where α j = i1c, j + |g j (Er)|2/
(
i1r, j − γ j

)
, 1c, j = ω − ωc, j (1r, j = ω − ωr, j ) represents the

detuning between the input field and the cavity mode (QD transition). For convenience, we
also define the cavity–QD detuning δ j ≡ ωc, j − ωr, j . The transport matrix can be regarded as a
basic cell in cascading subsystems and as obtaining the whole transportation for the N-coupled
cavity–QD system. The transport properties can thus be expressed as(

b̂(N)

in (ω)

b̂(N)
out (ω)

)
= TN T0 · · · T0T2T0T1

(
â(1)

in (ω)

â(1)
out(ω)

)
, (5)

where T0 is the transport matrix via the waveguide with a propagation phase θ . When studying
only the spectral character of the coupled QD–cavity interaction (section 3), we note that this
is analogous to classical microwave circuit design [28], where the transmission and reflection
characteristics from equation (5) can also be examined with coupled-mode theory with dipole
terms inserted. Examining the spectral character first (section 3) helps to understand the coupled
QD–cavity controlled quantum phase gate operation and performance (sections 4 and 5).

3. Spectral character of coupled QD–cavity arrays

To examine the physical essence, we need to first examine the spectral character of the
coupled cavity–QD system. The reflection and transmission coefficients are defined as rN1 (ω) ≡

â(1)
out (ω) /â(1)

in (ω) and tN1 (ω) ≡ b̂(N )
out (ω) /â(1)

in (ω). In the following, we also assume that these
cavities possess the same dissipation characteristics without loss of generality, i.e. κ0, j = κ0,
κ1, j = κ1, κ1 = 50κ0 and 0 j = 0.

Figure 2(a) shows the transmission spectra of two coupled empty cavities (without QD)
with different detuning (δ21 ≡ ωc,2 − ωc,1). When the two cavities are exactly resonant, a
transmission dip is observed; with increasing the δ21, a sharp peak exists at the center position
between the two cavity modes. This is an optical analogue to the phenomenon of EIT in atomic
vapors. We examine the classical optical analogue exactly through 3D finite-difference time-
domain (FDTD) numerical simulations. Specifically, figures 2(b) and (c) show an example of
the transmission and field distributions through the coherent interaction with two coupled empty
cavities, where the resonance of one cavity is detuned by three cases: δ21 = 1.140, 1.260 and
1.490. The optical transparency peak from the FDTD is broader than in figure 2(a) due to the
finite grid-size resolution, and is observed on top of a background Fabry–Perot oscillation (due
to finite reflections at the waveguide facets). The analogy and difference between an all-optical
analogue to EIT and atomic EIT were recently discussed in [7].
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Figure 2. (a) and (b): Transmission spectra of two coupled empty cavities, where
θ = 20π . Solid, dashed and dotted lines describe the cases of δ21 = 0, 0/2 and
0, respectively. (b) Numerical 3D FDTD simulations of the optical analogue of
EIT in two coupled cavities (θ = 0) for detunings 1.140 (red; 1εcavities = 0.135),
1.260 (blue; 1εcavities = 0.160) and 1.490 (green; 1εcavities = 0.185). The arrows
denote the EIT peak transmissions. The dashed gray lines denote the two detuned
individual resonances for the case of s1 = 0.05a. The black curve is for a single
cavity transmission for reference. (c) Example Ex -field distribution of coupled
empty photonic crystal cavities.

Figure 3(a) (top) shows the spectral characteristics for the case where a single QD
resonantly interacts with the first cavity, in the presence of QDs. When both cavities are
resonant, there exist two obvious sharp peaks located symmetrically around ω = 0 (for
convenience, we define ωc,1 = 0). This fact can be explained by dressed-mode theory. Resonant
cavity–QD interaction results in two dressed modes, which are significantly detuned from the
second empty cavity with the detuning ±|g1(Er)| = ±0/2. Both dressed modes non-resonantly
couple with the empty mode, resulting in two transparency peaks located at frequencies
ω ≈ ±0/4. When δ21 = 0/2, one dressed cavity mode non-resonantly couples with the empty
mode with a detuning 0, which leads to a transparency peak located near ω ' 0, while the other
dressed mode resonantly couples with the empty mode, which does not result in a transparency
peak. When δ21 continually increases, e.g. δ21 = 0, the vanished peak reappears since the two
dressed modes are always non-resonant with the empty mode.
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Figure 3. (a) Transmission spectra of two coupled subsystems with one QD (top)
and two QDs (bottom) where g = 0/2 and γ = γ1 = γ2 = κ0. Other conditions
are the same as in figure 2(a). (b) Spectral character of three coupled subsystems
with δ31 = 0/2 and δ1,2,3 = 0. Inset: δ31 = 0/2, δ21 = 0, δ1 = δ3 = 0, with δ2 =

0/2 (top) and δ2 = 0 (bottom). (c) and (d) Photon phase shift and delay (τsto)
through two QD–cavity subsystems, where ωc(r), j = $ and g = 0.20. Inset:
transmission spectrum.

Figure 3(a) (bottom) illustrates the case where both cavities resonantly interact with a
single QD each. Similar to the above analysis, we can explain the number and locations of
sharp peaks with respect to different δ21 by comparing the two pairs of dressed modes. For
example, when δ21 = 0, the dressed modes in the first cavity are located at ±0/2, whereas
the second pair is at 0/2 and 30/2, so the transparency peaks are located at [ − 0/2, 0/2]
and [0/2, 30/2], i.e. two peaks are near 0 and 0. Figure 3(b) shows the spectral character of
three coupled cavity–QD subsystems, under various cavity–cavity and cavity–QD detunings.
These transmission characteristics are helpful during experimental realization efforts to identify
the required tunings and detunings when multiple QD transitions and cavity resonances are
involved.

3.1. Phase shift and photon storage

To further examine this coupled cavity–QD system, figure 3(c) shows the transmission phase
shift for various detunings of the input photon central frequency, where the cavity and QD
transition are resonant for both subsystems. The phase shift has a steep change as we had
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Figure 4. Schematic diagram to illustrate the two-qubit quantum phase gate
based on the coupled cavity–cavity multi-QD scheme. A heterostructure
reflection element is introduced at the end of the waveguide to remove spatial
mode distinguishability, with only a single-output mode |L〉 for an input photon
mode |R〉. The QDs have a superposition of two ground states, |g〉 and |r〉. PBS1
and PBS2 represent the polarization beam splitters, D1 and D2 the single-photon
detectors, C the circulator and M the reflecting mirror. Here, PBS1 and PBS2
are actually regarded as filters since only the h-polarized photon is required in
our scheme. The response of detectors D1 and D2 provide an indication to show
the success of the gate operation and can also be used for measurement-induced
entanglement in future.

expected intuitively, which corresponds to a strong reduction of the group velocity of the photon.
As shown in figure 3(d), the delay time (τsto) in this coupled system is almost a hundred
times the cavity lifetime (τlife = 1/20). This coupled cavity–QD system can essentially be
applied to the storage of the photon. Moreover, our solid-state implementation has an achievable
bandwidth of ∼50 MHz in contrast to less than 100 kHz in atomic systems, although the delay-
bandwidth product is comparable. To obtain longer photon storage, one can consider dynamical
tuning [29] to tune the cavity resonances with respect to the QD dipolar transitions to break the
delay-bandwidth product in a solid-state cavity–QD array system.

4. Quantum phase gate operation

In the above section, we have shown the novel transport character of the coupled cavity–QD
system. Now we study the possibility of quantum phase gate operation of the QDs based on
this transport character. The scheme to realize this multi-QD coupled cavity–cavity system
is illustrated in figure 4. The QDs are represented by two ground states |g〉 and |r〉, where
the state |r〉 is largely detuned with the respective cavity mode. The two ground states can be
prepared via QD spin states as demonstrated remarkably in experiment in [30] with near-unity
fidelity. The input weak photon pulse is assumed h-polarized, with an input pulse duration D
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(e.g. 1 ns) larger than the loaded cavity lifetime for the steady-state approximation. To remove
the distinguishability of the two output photon spatial modes in the waveguide (transmitted and
reflected), a reflecting element is inserted at the end of the waveguide (such as a heterostructure
interface [17, 18]), as shown in figure 4. This ensures that the photon always exits in the left-
propagating mode |L〉 (from a right-propagating input mode |R〉) without any entanglement with
the QD states. Alternatively, a Sagnac interferometer scheme such as introduced in [31] can also
be implemented to remove the spatial mode distinguishability and QD–photon entanglement. In
this single-input single-output mode scheme [32, 33], |h〉 and |v〉 represent the two polarization
states of the input photon. We emphasize that in the below calculations we have considered
the complete characteristics of the full system (including the end reflecting element and the
resulting ‘standing wave’ due to the long photon pulse width) where we examined the final left-
propagating output mode |L〉 from a right-propagating input mode |R〉 (figure 4). The reflection
interference is included where we force b̂(2)

in = b̂(2)
out (figure 1(b)) from the reflection element,

when calculating the temporal pulse delays for the different QD states.
To facilitate the discussion but without loss of generality, we describe the all resonance

case (i.e. ω = ωc(r), j ) to describe the idea of the phase gate operation; in the subsequent
numerical calculations, we will demonstrate the gate feasibility under non-ideal detunings. As
an example, we focus on the realization of a two-qubit (two QDs) phase gate. Figure 5 now
shows the calculated reflection field (real and imaginary components) of the complete coupled
cavity–cavity and two-QD system for the four superpositioned states: |9〉 = α1|r〉1|r〉2 +
α2|g〉1|r〉2 + α3|r〉1|g〉2 + α4|g〉1|g〉2. We address the following cases for the different QD states.

• Case I. The two QDs are initially prepared in |u〉1|v〉2(u, v = g, r) and at least one QD
occupies the ground state |r〉. From figures 5(a) and (b) and for the all resonance case,
we see that Re[r 21] ' −1 and Im[r 21] ' 0 under the over-coupling regime (κ0 � κ1) and
with the large Purcell factor (g2/0γ � 1). This fact can be understood by regarding the
resonant condition (ωc, j = ω). The input photon will be almost reflected by one empty
cavity, in which the QD is in |r〉, resulting in a final state −|u〉1|v〉2|L〉.

• Case II. The QDs initially occupy |g〉1|g〉2. In this case, note that the photon pulse interacts
coherently with both cavities and two QDs, including the reflection element that is placed
specifically to achieve b̂(2)

in = b̂(2)
out, before completely exiting the system. As demonstrated

in figures 5(a) and (b) and for the all resonance case, the final output state is described by
Re[r 21] ' 1 and Im[r 21] ' 0. The resulting state is |g〉1|g〉2|L〉. We note that the photon
loss is small for all four cases when the input photon pulse is in resonance with the cavity
resonances, as can be done experimentally by tuning the input photon.

Therefore, with the exit of the photon of the single-input single-output system, the state
of the two QDs after the interaction is now described by: |9〉 = −α1|r〉1|r〉2 − α2|g〉1|r〉2 −

α3|r〉1|g〉2 + α4|g〉1|g〉2. Hence, after the above process and recombining at PBS1, the state of
the QD–QD gate described by U = eiπ |g〉12〈g| can be manipulated. Moreover, if αi =1/2 (i =

1, 2, 3, 4), we have |9〉 = 1/
√

2(|r〉1|−〉2 + |g〉1|+〉2) (where |−〉2 = 1/
√

2(|g〉2 − |r〉2) and
|+〉2 = 1/

√
2(|g〉2 + |r〉2)), which is the generation of the maximally entangled state in the

coupled QDs. Most importantly, this idea can also be extended to realize an N-qubit
gate with only one step, which is of importance for reducing the complexity of practical
quantum computation and quantum algorithms for physical realization. In addition, using this
configuration, some special entangled QD states (e.g. the cluster state) can be generated [34].
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Figure 5. Real (a) and imaginary (b) parts of the reflection coefficients for initial
QD states, |r〉1|r〉2, |r〉1|g〉2, |g〉1|r〉2 and |g〉1|g〉2. Here, we assume |g1(Er)| =

|g2(Er)| = 20, δ21 = δ1 = δ2 = 0, and the propagation phase between the second
cavity and the reflection element is adjusted as θ ′

= nπ + π/2 to compensate for
the phase shift induced by the mirror reflection (ideally, π ). Other parameters
are the same as in figure 2(a). (c) Shape function of the photon pulse for cases
when the single QD is coupled (|g〉) or decoupled (|r〉) to the single cavity, and
without the cavity. (d) Real and imaginary parts of the reflection coefficient when
the reflection phase of the mirror deviates from ideal π with a deviation of 0.5.

We provide a few more notes on the designed coupled cavity–cavity multi-QD system.
Firstly, the temporal distinguishability is small for the single cavity–QD system; in figure 5(c),
we plot the shape function of the output photon pulse for cases when the QD is coupled
(|g〉), decoupled (|r〉) or without the cavity, through numerical simulation of the dynamical
evolution of the system. The pulse shape function overlaps very well. Secondly, the calculated
temporal distinguishability in the coherently coupled cavity–cavity multi-QD system is also
small compared with the pulse duration D. Specifically, with the parameters in figure 5(a), the
photon delays due to the coupling to the cavities are calculated as approximately τlife, 2τlife,
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Figure 6. Gate fidelity change (δF ≡ 1 − F) (a) and photon loss P (b) of the
two-qubit gate versus g/0. The reflecting element has 95% reflectivity. Here
the carrier frequency is assumed as $ − 2.5κ0 to avoid the EIT-like peaks of
two coupled empty cavities, and a scattering loss of 1% is used for the short
propagation lengths. Other parameters are the same as in figure 3(a). The shaded
areas correspond to loaded cavity Q values in the range of 104 to 105.

2τlife and 4τlife in the case of the states |r〉1|r〉2, |r〉1|g〉2, |g〉1|r〉2 and |g〉1|g〉2, respectively,
where the loaded cavity τlife is about 0.02 ns. The photon delay of the complete system is
therefore sizably smaller than the pulse duration (of 1 ns, for example). Furthermore, this cavity-
induced delay will furthermore decrease with increasing the coupling rate g, further reducing
temporal distinguishability. Of course, the size of the chip is also small (tens of microns)
so that the propagation time (2S/v, where S denotes the distance between the first cavity
and the reflector, and v the group velocity) in the waveguide is much smaller than the pulse
duration D. Thirdly, we examine the dependence of the overall system reflection coefficient on
the phase variation from the reflection element, when deviating from the ideal π phase shift.
Figure 5(d) shows the numerical results, where a slight dependence is observed when there is
a phase deviation of 0.5 from π . Moreover, the phase shift from the reflection element can be
externally controlled stably, e.g. with an external and focused pump beam to thermally tune the
reflection region.
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5. Gate fidelity and photon loss

To exemplify the coupled cavity system, isolated single semiconductor QDs in high-Q small
modal volume (V) photonic crystal cavities are potential candidates, such as self-assembled
InAs QDs in GaAs cavities [20]–[23], or PbS nanocrystals in silicon cavities at near 1550 nm
wavelengths [35]. For the PbS nanocrystal and silicon cavity material system, we use the
following parameters in our calculations: γs ∼ 2 MHz, γp ∼ 1 GHz at cooled temperatures, V ∼

0.4 µm3 at 1550 nm, with a resulting single-photon coherent coupling rate of g ∼ 12.4 GHz.
Loaded cavity Q values in the range of 104 and 105 are achievable experimentally, with intrinsic
Q values up to 106 reported recently [18, 19].

To characterize the present gate operation, figures 6(a) and (b) present the two-qubit phase
gate fidelity F and photon losses P for various g values and the parameters described above,
even under non-ideal detuning conditions and the bad cavity limit. It should be noted here
that, with δ21 and δ1,2, we can know the detuning between two QDs. For example, in the case
of δ21 = 5κ0 and δ1,2 = 0, we deduce that the detuning between the two QDs is 5κ0. Based
on the above parameters, F can reach 0.99 or more, and P can be below 0.04. As shown in
figure 6, for cavity–cavity detunings in the range of the intrinsic cavity decay rate, both F and
P do not degrade significantly but are strongly dependent on the cavity decay rate. Likewise,
with QD–cavity detuning that is comparable with the intrinsic cavity decay rate, both F and
P do not change significantly but are dependent on the cavity decay rate. We note that the
on-resonant (the cavity modes are resonant with the dipole transitions of the QDs) photon
loss P can be larger than the non-resonant case when g is small. This can be explained by
considering the decay of QDs. When the QDs resonantly interact with cavity modes, the decay
of QDs becomes distinct, resulting in an increase of photon loss. Moreover, we note that the
QD–QD detuning plays an important role in the quantum gate operations. Given the current
large inhomogeneous distribution of QD transitions, however, active tuning methods such as
Stark shifts would probably be needed to control the detuning within acceptable bounds to
obtain a strong quantum gate fidelity and a low photon loss. Furthermore, we note that, with
increasing g, the photon loss P exhibits an increase before a decrease, which can be understood
by studying the photon loss when the QDs are in the state of |g〉1|g〉2. When g ' 0/2, the
absorption strength (resulting from κ0 and γ ) of the input photon by the coupled cavities reaches
the maximum.

6. Conclusion

We proposed and investigated the operation and performance of a scalable cavity–QD array on a
photonic crystal chip towards controlled quantum phase gates. The coupling among single-QD
emitters and quantized cavity modes in a coherent array results in unique transmission spectra,
with an optical analogue of EIT-like resonances providing potential photon manipulation. In
the quantum phase gate operation, we note that the gate fidelity can reach 0.99 or more and
the photon loss can be below 0.04 in a realistic semiconductor system, provided the non-ideal
detunings are kept within the cavity decay rates. Our study provides an approach for a chip-scale
two-qubit gate towards a potential quantum computing network [36, 37].

Acknowledgments

We thank F Sun for helpful discussions, and acknowledge funding support from the DARPA,
the New York State Office of Science, Technology and Academic Research and the NSF.

New Journal of Physics 10 (2008) 123013 (http://www.njp.org/)

http://www.njp.org/


12

YFX, XBZ, YLC, ZFH and GCG were also supported by Knowledge Innovation Project and
International Partnership Project of the Chinese Academy of Sciences and by the Chinese
Postdoctoral Science Foundation.

References

[1] Mabuchi H and Doherty A C 2002 Science 298 1372
[2] McKeever J et al 2003 Phys. Rev. Lett. 90 133602
[3] Keller M et al 2004 Nature 431 1075

McKeever J et al 2004 Nature 303 1992
Kuhn A, Hennrich M and Rempe G 2002 Phys. Rev. Lett. 89 067901

[4] Volz J et al 2006 Phys. Rev. Lett. 96 030404
[5] Rosenfeld W et al 2007 Phys. Rev. Lett. 98 050504
[6] Smith D D et al 2004 Phys. Rev. A 69 063804
[7] Xiao Y-F et al 2007 Phys. Rev. A 75 063833

Qian J, Qian Y, Feng X-L, Jin S-Q and Gong S-Q 2008 Phys. Rev. A 77 023823
[8] Xu Q et al 2006 Phys. Rev. Lett. 96 123901
[9] Totsuka K, Kobayashi N and Tomita M 2007 Phys. Rev. Lett. 98 213904

[10] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
Yao W, Liu R B and Sham L J 2005 Phys. Rev. Lett. 95 030504
Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503

[11] Ogden C D, Irish E K and Kim M S 2008 arXiv:0804.2882
[12] Hartmann M J, Brandao F G S L and Plenio M B 2006 Nat. Phys. 2 849

Hartmann M J and Plenio M B 2007 Phys. Rev. Lett. 99 103601
[13] Greentree D, Tahan C, Cole J H and Hollenberg L C L 2006 Nat. Phys. 2 856

Angelakis D G, Santos M F and Bose S 2007 Phys. Rev. A 76 031805
[14] Hartmann M J, Brandao F G S L and Plenio M B 2007 Phys. Rev. Lett. 99 160501
[15] Hughes S 2007 Phys. Rev. Lett. 98 083603
[16] Hu F M, Zhou L, Shi T and Sun C P 2007 Phys. Rev. A 76 013819
[17] Tanaka Y, Upham J, Nagashima T, Sugiya T, Asano T and Noda S 2007 Nat. Mater. 6 862
[18] Noda S, Fujita M and Asano T 2007 Nat. Photonics 1 449
[19] Tanabe T, Notomi M, Kuramochi E, Shinya A and Taniyama H 2007 Nat. Photonics 1 49
[20] Yoshie T et al 2004 Nature 432 200
[21] Hennessy K et al 2007 Nature 445 896
[22] Englund D et al 2007 Opt. Express 15 5550
[23] Badolato A et al 2006 Science 308 1158
[24] Englund D et al 2007 Nature 450 857
[25] Xiao Y-F et al 2007 Appl. Phys. Lett. 91 151105
[26] Waks E and Vuckovic J 2006 Phys. Rev. A 73 041803
[27] Sørensen A S and Mølmer K 2003 Phys. Rev. Lett. 91 097905
[28] Ghose R N 1963 Microwave Circuit Theory and Analysis (New York: McGraw-Hill)

Slater J C 1950 Microwave Circuits (New York: McGraw-Hill)
Kurokawa K 1969 An Introduction to the Theory of Microwave Circuits (New York: Academic)

[29] Yanik M F, Suh W, Wang Z and Fan S 2004 Phys. Rev. Lett. 93 233903
Xu Q, Dong P and Lipson M 2007 Nat. Phys. 3 406
Yanik M F and Fan S 2007 Nat. Phys. 3 372

[30] Atatuer M et al 2006 Science 312 551
[31] Gao J, Sun F and Wong C W 2008 Appl. Phys. Lett. 93 151108

New Journal of Physics 10 (2008) 123013 (http://www.njp.org/)

http://dx.doi.org/10.1126/science.1078446
http://dx.doi.org/10.1103/PhysRevLett.90.133602
http://dx.doi.org/10.1038/nature02961
http://dx.doi.org/10.1103/PhysRevLett.89.067901
http://dx.doi.org/10.1103/PhysRevLett.96.030404
http://dx.doi.org/10.1103/PhysRevLett.98.050504
http://dx.doi.org/10.1103/PhysRevA.69.063804
http://dx.doi.org/10.1103/PhysRevA.75.063833
http://dx.doi.org/10.1103/PhysRevA.77.023823
http://dx.doi.org/10.1103/PhysRevLett.96.123901
http://dx.doi.org/10.1103/PhysRevLett.98.213904
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.95.030504
http://dx.doi.org/10.1103/PhysRevLett.96.010503
http://arxiv.org/abs/0804.2882
http://dx.doi.org/10.1038/nphys462
http://dx.doi.org/10.1103/PhysRevLett.99.103601
http://dx.doi.org/10.1038/nphys466
http://dx.doi.org/10.1103/PhysRevA.76.031805
http://dx.doi.org/10.1103/PhysRevLett.99.160501
http://dx.doi.org/10.1103/PhysRevLett.98.083603
http://dx.doi.org/10.1103/PhysRevA.76.013819
http://dx.doi.org/10.1038/nmat1994
http://dx.doi.org/10.1038/nphoton.2007.141
http://dx.doi.org/10.1038/nphoton.2006.51
http://dx.doi.org/10.1038/nature03119
http://dx.doi.org/10.1038/nature05586
http://dx.doi.org/10.1364/OE.15.005550
http://dx.doi.org/10.1126/science.1109815
http://dx.doi.org/10.1038/nature06234
http://dx.doi.org/10.1063/1.2795798
http://dx.doi.org/10.1103/PhysRevA.73.041803
http://dx.doi.org/10.1103/PhysRevLett.91.097905
http://dx.doi.org/10.1103/PhysRevLett.93.233903
http://dx.doi.org/10.1038/nphys600
http://dx.doi.org/10.1038/nphys630
http://dx.doi.org/10.1126/science.1126074
http://dx.doi.org/10.1063/1.2999588
http://www.njp.org/


13

[32] Duan L-M, Wang B and Kimble H J 2005 Phys. Rev. A 72 032333
Duan L-M and Kimble H J 2004 Phys. Rev. Lett. 92 127902
Duan L-M, Kuzmich A and Kimble H J 2003 Phys. Rev. A 67 032305

[33] Lin X-M, Zhou Z-W, Ye M-Y, Xiao Y-F and Guo G-C 2006 Phys. Rev. A 73 012323
[34] Cho J and Lee H-W 2005 Phys. Rev. Lett. 95 160501
[35] Bose R et al 2007 Appl. Phys. Lett. 90 111117
[36] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[37] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503

New Journal of Physics 10 (2008) 123013 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevA.72.032333
http://dx.doi.org/10.1103/PhysRevLett.92.127902
http://dx.doi.org/10.1103/PhysRevA.67.032305
http://dx.doi.org/10.1103/PhysRevA.73.012323
http://dx.doi.org/10.1103/PhysRevLett.95.160501
http://dx.doi.org/10.1063/1.2714097
http://dx.doi.org/10.1103/PhysRevLett.78.3221
http://dx.doi.org/10.1103/PhysRevLett.96.010503
http://www.njp.org/

	1. Introduction
	2. Theoretical model
	3. Spectral character of coupled QD-- cavity arrays
	3.1. Phase shift and photon storage

	4. Quantum phase gate operation
	5. Gate fidelity and photon loss
	6. Conclusion
	Acknowledgments
	References

