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Abstract

Recent advances in silicon photonics promise to revolutionize modern technology by improving
the performance of everyday devices in multiple fields (Thomson et al 2016 J. Opt. 18 073003).
However, as the industry moves into a mass fabrication phase, the problem of adequate testing of
integrated silicon photonics devices remains to be solved. A cost-efficient manner that reduces
schedule risk needs to involve automated testing of multiple devices that share common
characteristics such as input—output coupling mechanisms, but at the same time needs to be
generalizable to various types of devices and scenarios. This paper presents a neural network-based
automated system designed for in-plane fiber-chip-fiber testing, characterization, and active
alignment of silicon photonic devices that use process-design-kit library edge couplers. The
presented approach combines state-of-the-art computer vision techniques with time-series
analysis, to control a testing setup that can process multiple devices and be quickly tuned to
incorporate additional hardware. The system can operate at vacuum or atmospheric pressures and
maintains stability for fairly long time periods in excess of a month.

1. Introduction

As modern advances push the boundaries of current technologies in search for higher performance devices,
silicon photonics is emerging as a disruptive technology that promises to revolutionize multiple areas by
introducing technologies such as optical sensing [1-5], quantum photonics [6, 7] and computing [8, 9],
chaos-based secure communications [10-12], and photonics neural networks [13, 14]. After decades of
research and significant investment, silicon is the mainstream workhorse of the semiconductor industry and
its fabrication process is a mature infrastructure, with high process yield and precision nanofabrication. For
example, with silicon-on-insulator (SOI) platforms, silicon photonics learns from techniques in silicon
complementary metal-oxide semiconductors (CMOS) processes with system commercialization and
foundry processes [15-18].

With the growth of silicon photonics commercialization and foundries, new challenges in packaging and
testing should be addressed to fully integrate the technology. While the cost of packaging for traditional
integrated circuits is variable, the most significant cost reductions come from optimizations in the process,
which achieve high throughput [19]; this includes the selection of appropriate processes that can be
automated. In the case of testing, prices vary from a flat rate of 2% of the total manufacturing cost up to an
order-of-magnitude higher [20], depending on the amount of wor performed and the reductions in liability
cost that it could provide. However, packing and testing photonic devices is usually more expensive because
the low bandgap of silicon requires that the light signal necessary to drive the system comes from an external
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source [21]. When the light source is not built directly onto the silicon photonics chip (e.g. through
heterogeneous integration), optical components need to be aligned to couple the light source. There are three
main options to couple an external light source to a silicon photonics chip. The first is by grating couplers,
which couple a fiber/fiber-array positioned on top of the structure, providing good alignment tolerance on
the order of a few micrometers. However, grating couplers usually have a large footprint (=100 zm?) and
higher insertion losses than other methods. The second method is evanescent coupling, where an inverse
coupler is needed in close proximity to the input waveguide, which has been demonstrated by using polymer
waveguides [22]. The third method is edge coupling, where a lensed optical fiber [23-25] can be positioned
on the side of the chip and coupled to an inverse tapered coupler used for mode matching. A lensed fiber for
a laser wavelength of around 1550 nm can produce a spot size down to ~2 pm and a ~12 pum Gaussian waist
for this type of coupling; the mode converter couples this mode from the fiber to the waveguide. This
method does not use a large die area, and usually provides the highest input power [26]. Other novel
coupling techniques that include subwavelength-gratings [27, 28] or light in-coupling to fiber via imprinted
nanostructures on fibers [29], represent variations of the described processes. However, silicon photonics
using CMOS processes needs to adhere to technological constraints [30]. One of the main design rules
concerns the dimension requirements for the waveguides and couplers; in fact, the thickness of the
waveguide is usually fixed and needs to be matched to the top membrane of the SOI wafer being used,
usually 220-250 nm [15]. Under these dimensional constraints, the alignment tolerances needed for this
process are typically sub-micron, as will be described shortly.

Multiple techniques have been suggested to improve the edge coupling process, including improvements
to the couplers [31, 32] and the placement of the fibers [26]. The high throughput required to produce
thousands of devices at a reduced cost can be further improved with automated packaging and testing
processes [33—35]. In this paper we present an ‘AuTomated Opto-Mechanical Intelligent Coupling System’
(AtOMICS), which combines testing hardware control, state-of-the-art computer vision algorithms, and
customized time-series analysis models in order to generate a setup suitable for testing and characterization
of silicon photonics chiplets and that can also be used for active alignment during the packaging process of
laser-detector coupled devices. By replacing actuator drivers or adding additional data acquisition devices,
AtOMICS is a flexible program that is readily compatible with other hardware too. While the computer
vision models used in AtOMICS have been optimized to detect the inverse couplers and optical fibers, which
we present in the following study, no constraints on magnification or specific patterns included in the testing
chiplets have been used on the computer vision models. As a result, the software can be readily generalized to
multiple formats of chip input—output coupling without major changes.

In the following sections, first we illustrate the system and its hardware, including the integrated data
acquisition equipment. Second, we describe the system’s algorithms. Third we detail the system performance
data for the coupling process, long-term measurement, and coupling stability, with the latter having a
potential application in active alignment during packaging processes.

2. AtOMICS description

2.1. Hardware and physical connections

The components of AtOMICS are shown in figure 1(a). The system is designed to couple input and output
optical fibers at the edges of a silicon photonics chiplet, with sub-micrometer alignment tolerances.
Implemented inside a Janis ST-500 vacuum chamber, the system can operate at ambient pressure or vacuum,
enabling the test of both regular silicon photonics devices and low pressure/temperature optical transducers
in dual operation. The test results presented in the current paper have been collected in ambient or vacuum
at ~30 mTorr, and have been done with pressures as low as ~1 yTorr. Figure 1(b) shows a zoomed-in image
of the vacuum chamber and the internal components of the setup. The center gold stage is the chiplet mount,
which includes a temperature controller, and is located on top of an x—y piezoelectric positioner and a spacer
block. The right and the left towers are a stack of x—y—z positioners that move the input and output optical
fibers to couple them to the waveguides on the silicon photonics chiplets. In our case, the piezoelectric stages
are a set of two Attocube ANPx101s on the x- and y-axis, and an Attocube ANPz101 on the z-axis. Other
stages can be used by replacing the controller driver in the program, as the algorithms and calculations are
hardware independent. The entire structure is mounted on a support plate on top of a goniometer with a
travel range of 10°. The goniometer is capable of moving the entire setup and is used as a way to input
precise gravitational forces and induce changes in acceleration when testing photonic optomechanical
sensors [2]. The vacuum chamber is closed by a lid that has a clear visor, and a microscope lens is mounted
on top, as shown in figure 1(a). The microscope has three single-axis motors that can move it along the x-, y-,
and z-axes, allowing it to reach the entire chiplet and the optical fibers. These motors are controlled by an
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Figure 1. AtOMICS hardware setup and edge coupling. (a) Hardware integrated to AtOMICS. The chiplet is mounted inside the
vacuum chamber and is coupled to a pair of lensed fibers. The microscope and CCD cameras monitor the positions of the optical
fibers and the inverse tapered couplers. The system integrates a piezoelectric controller that translates the stages inside the
chamber and a microscope controller that translates the camera axis. A pump laser and a polarization controller are connected to
the input optical fiber, and an optical switch connects the output signal with the power meter and other data acquisition
equipment. (b) A zoomed-in depiction of the vacuum chamber interior. Each optical fiber is mounted on a 3-stage tower of
piezoelectric stages that translate in the x—y—z axes. The interior setup is assembled on a mounting plate, located on a goniometer
to tilt the chiplet assembly. (c) The microscope image of a silicon photonics optomechanical chiplet coupled using the AtOMICS
setup. The chiplet is composed of multiple silicon optomechanical transducers arranged into two vertical lines. The lensed optical
fiber on the left of the chiplet is aligned to the inverse tapered coupler (in white). The optical waveguide, which goes from the left
of the coupler to the silicon photonics optomechanical transducer, is shown in lighter red across the chiplet. Scale bar is 200 zem.

ESP-300 controller and are equipped with relative encoders. The encoders are further tracked by AtOMICS
and correlated to the position of the piezoelectric stages.

Figure 2 shows the rest of the elements of the system and how data is transmitted across them. The yellow
arrows show the flow of light and experimental data collected in the optical carrier. Control signals are
marked in blue and are bidirectional when data is read from the hardware and used as feedback to the
software controller; movement confirmation is not taken as a return control signal in this case. The light blue
arrows represent a physical input that is sent to the testing device, which could be the application of an
external force or a magnetic field. The input side of the vacuum chamber has a lensed optical fiber that is
connected to the laser source, which provides the optical excitation for the photonics devices and is fed into a
motorized polarization controller. The output fiber is connected to an optical switch, which is driven by an
Arduino and connects via a universal asynchronous receiver/transmitter. The optical switch sends the output
optical signal to an external power meter that monitors the changes inside the vacuum chamber and provides
a feedback signal to trigger the coupling controller. When the system is coupled and the power is stable, the
switch sends the output signal to an optical detector that is connected to the data acquisition hardware; some
examples of hardware supported by AtOMICS for data collection are oscilloscopes, frequency counters,
spectrum analyzers, and multipurpose data acquisition hardware. The collected data from these instruments
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Figure 2. AtOMICS signal flow diagram. AtOMICS is controlled by our in-house software that integrates multiple hardware
components with control algorithms for coupling automation, supervision, and testing. Control signals are sent to the different
components connected via universal serial bus (USB). Visual feedback is obtained from the CCD camera on top of the
p P
microscope, which is moved to different regions of the setup during the coupling and testing processes. The output signal is
monitored by the power meter to provide feedback and optimized fiber position. Multiple data acquisition devices can be
connected and managed by the system depending on the type of test that is being performed.

are later analyzed and transmitted to other hardware, such as a real-time target, for further integration with
other testing systems.

2.2. Software and coupling algorithms

The main characteristics of AtOMICS and the code that controls the system are presented in figure 3.
AtOMICS can be assessed from a custom graphical user interface (GUI), as presented in figure 3(b). Here the
controllers for some of the hardware functions are shown; they can be used to manually tune the equipment
or to run the automated algorithms for coupling of the lensed optical fibers to the chiplets’ edges. The
interface continuously images and records the interior of the vacuum chamber, as captured by the CCD
(charge-coupled device) camera and the microscope. The object detection algorithm is run over the video
and detects the objects present in the images. Position information is kept and fed to the coupling
algorithms, and the bounding boxes on the fibers and couplers are displayed to monitor the process.

In addition, the program constantly measures the pressure inside the chamber as well as the optical power
on the output detector through the optical switch, which can direct 95% of the optical power to the optical
detector or power meter as needed. AtOMICS constantly records this information every few seconds so that it
can be correlated with experimental data. Moreover, the program indicates the status of the system hardware
and keeps track of the microscope controller’s encoder reading and the piezoelectric system’s virtual encoder.

In order to design the coupling algorithms, the first step was the characterization of the input and output
lensed fibers power profile when the system is coupled to a testing chiplet. The following data recorded with
AtOMICS corresponds to the testing of a silicon photonics optomechanical chipset fabricated on SOI with a
top silicon membrane thickness of 250 nm, as described in [36]. The optomechanical chiplet used is shown
in figure 1(c), with the input optical fiber to the left. The optical fiber used is an anti-reflective (AR) coated
lensed fiber with a 2 um spot diameter and a nominal working distance of 12 pm that has been metalized a
few mm from its tip. This optical fiber has been optimized to match the size of the coupler’s mode and has
been reinforced for inertial measurement applications similar to the ones described in [2]. The lensed optical
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Figure 3. AtOMICS software and coupling system. (a), AtOMICS coupling algorithm. The system combines the computer vision
model using data taken from the camera and the virtual encoder from the microscope position, to couple the lensed optical fiber
to the edges of the chiplet. (b), graphical user interface (GUI) of AtOMICS. The system controls each degree-of-freedom from the
optical fiber stages separately and provides multiple movement options as well as speeds. The coupling power and pressure are
also continuously displayed on screen and recorded for further analysis. The microscope and camera can be controlled in parallel
when the system is coupling the optical fiber actively. The encoder positions read from the microscope are displayed for the
current and future movements. Additional controllers are present for auto-coupling, active alignment, and long-term coupling.
(¢), Transmitted power as a function of the lensed fiber position for the input side. Top figure shows the normalized transmission
for the z-axis (up and down, orthogonal to the chiplet plane), and for the y-axis (north and south direction relative to the coupler
in the plane parallel to the chiplet). Lower plot shows the transmission for the x-axis positioning, with negative distance defined
as the fiber is going away from the chiplet. (d), Transmitted power as a function of the lensed fiber position for the output side.
Top figure shows the normalized transmission for the y- and z-axis, and the bottom figure shows the x-axis.

fiber is positioned at the chiplet edge, and an optical waveguide travels across the chiplet from the coupler to
the transducer; a second waveguide collects the optical signal from the transducer and propagates to the exit
coupler. This optomechanical transducer has optical and mechanical modes that can be excited by using a
driving laser. That light delivered to the transducer is confined in a slot cavity in the photonic crystal at the
core of the structure; the electric field is confined in a subwavelength cavity, resulting in an electromagnetic
gradient-induced optomechanical force that drives mechanical movements on a suspended structure [2, 37,
38]. The movement of this mechanical structure can be measured by the output detector as modulations in
the optical carrier. The power dependence on the measured modes can be calculated and is described

in [39, 40].

The input and output optical fiber power transmission profile as a function of position centered on the
inverse tapered coupler is shown in figures 3(c) and (d). The z-axis is defined as out-of-plane and orthogonal
to the chiplet plane, the y-axis runs north and south along and parallel to the chiplet edge, and the x-axis is
aligned left and right along the waveguide and coupler axes. As shown in the upper plots of figures 3(c) and
(d), the z-axis is, in general, the most sensitive axis, having a 15 dB transmission loss over a change in
position Az = 2 pym. This is followed by the y-axis with a 4 dB transmission loss over a change in position
Ay =~ 2 pm. The x-axis is, in general, the least sensitive of the three as long as the fiber tip is maintained
within 5 gm from the nominal fiber working distance after the device has been coupled. The working
distance for the lensed optical fiber in this experiment is ~12 pm. From the plots, it can also be seen that the
transmitted power is, in general, more sensitive to the output fiber position than the input fiber position.
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Table 1. Object detection algorithm performance. Mean average precision (mAP) and detection speed of multiple state-of-the-art object
detection neural networks. *Indicates performance measured on the Microsoft COCO dataset; other performance is reported on the
PASCAL VOC 2007 dataset. Further information can also be found in [43, 44].

Object detection network algorithm mAP Frames per second
SS + R-CNN [45] 66.0 0.03

SS + SPP-Net [46] 63.1 0.44

Fast R-CNN [47] 66.9 0.5

Faster R-CNN (VGG16) [48] 69.9 5

Faster R-CNN (ResNet101) [49] 76.4 5

YOLOV2 [50] 76.8 67

SSD512 [51] 74.3 59

FPN [52] 36.20" 5

Mask R-CNN [53] 35.7* 5

The reason for this lies in the physics of the optomechanical transducer more than in the waveguide/coupler
system since input power accumulates inside the slot cavity on the center of the photonic crystal, and only a
small part of the optical power is coupled back to the output waveguide. Once the transmission power profile
and tolerances have been characterized, these values were fed into the coupling system as part of the coupling
algorithm designed and described in figure 3(a).

The process of coupling the input and output lensed fibers to the on-chip waveguides is performed in
two steps and illustrated in figure 3(a). First, a rough coupling step is performed by a computer vision
algorithm that determines the location of the chiplets and the fibers, after which the system moves the fibers
to the appropriate position. As shown in table 1, multiple state-of-the-art object detection neural networks
were considered to determine the computer vision algorithm to be implemented. These algorithms are
usually evaluated by the mean average precision (mAP) of the detections, as well as the speed at which the
images can be processed. In order to pick the object detection algorithm, we based our decision on published
performance metrics available on the PASCAL VOC 2007/12 [41] and Microsoft COCO [42] datasets. For
our current application, the need for image processing speed, in frames per second (fps), is not as critical
during the coupling process since the fibers are slowly moved across the setup; in contrast, precision is a high
concern since errors in position detection could cause damage in fibers and couplers. For the current
implementation, we decided to exchange speed for an increase in precision by going with an algorithm of the
region-based convolutional neural networks (R-CNN) family which on average has the highest mAP, as
shown in table 1. The chosen algorithm is based on the Faster R-CNN implementation, which runs at 5 fps,
and is sufficiently fast for our application. The performance of Faster R-CNN has been measured at 76.4 on
the PASCAL VOC 2007, which is very good for a core algorithm. However, the comparison table is used only
as a general guideline, as final performance is dependent on various other systemic and implementation
factors. In addition, we present the performance of other algorithms on the Microsoft COCO dataset as a
comparison. Special attention is taken on Mask R-CNN, which is an algorithm that extends Faster R-CNN
and could be used for semantic segmentation as a future implementation that can add an extra layer of
accuracy for the solution of the presented detection and localization problem.

A second design choice made for the object detection algorithm is the convolutional backbone for image
classification. A survey of convolutional networks that were considered is shown on table 2. In principle, the
R-CNN family can use multiple backbones as long as the convolutional features can be shared between the
region proposal and classification networks, which requires access to some intermediate layers. Another
criterion that can be used is the number of parameters that each of these networks require, as this would
impact performance and memory requirements.

In order to solve the object detection problem, we created a dataset containing ~7300 images divided
into multiple classes including lensed optical fiber and couplers. A first training step was performed on the
classification networks using these set and initial weights trained on the Imagenet dataset, as is customary.
The use of this dataset enables transfer learning from the ImageNet dataset which contains 14 million images
annotated over 20 000 categories in order to help improve the model as low-level features and filters learned
from this set can be extended to the classification problem at hand. By performing small tuning of the
networks, we obtained the accuracy presented in column 4 of table 2. Good results were obtained with
Xception and ResNet with 0.876 and 0.870 accuracy respectively on the testing set. With this information and
our choice of the Faster R-CNN model, we decided to use a ResNet50 for the convolutional backbone. This
network was implemented with 3 x 3 convolutional filters, where a pooling layer was placed after the initial
filter layer, and is composed of a total of 50 layers. For the deeper layers, down sampling is performed, and as
the feature map size is halved, the number of filters is doubled in order to maintain feature complexity [49].
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Table 2. Classification networks performance. Multiple classification networks were tested as core of the R-CNN based object detector.
The number of parameters used by each convolutional network architecture as well as of the box performance on the Imagenet and the
customized set are reported.

Optical fiber
Classification network type # Parameters Imagenet dataset accuracy dataset accuracy
Xception [54] 22855952 0.790 0.876
VGGNET [55] 134000 000 0.719 0.845
ResNet50 [56] 26000 000 0.785 0.870
InceptionV3 [57] 24000000 0.788 0.827
InceptionResNetV?2 [58] 56 000 000 0.801 0.848
1.0 MobileNet-224 [59] 3300000 0.833 0.792
NASNetMobile [60] 89000000 0.827 0.774
EfficientNetB7 [61] 66 000 000 0.843 0.844
EfficientNetB3 [61] 12000 000 0.816 0.845

Additional techniques such as image augmentation and early stopping have been used during the training
process in order to prevent overfitting to the training and validation sets. Due to the complexity of the
problem at hand, image detection algorithms do not use a sole metric to measure performance of the system,
but one that combines multiple of them. While we have monitored loss and recall for the detection headers,
as shown in table 2, and we have monitored similar metrics such as class loss and box loss of the region
proposal, as well as the Mask R-CNN sections, for the segmentation and object detection problem at hand,
we used mean Average Precision (mAP). This metric combines Intersection over Union (IoU), precision, and
recall. It is based on the calculation of IoU over the predicted bounding box of the object that has been
detected and the ground-truth from the labeled box. After training the object detection model in our custom
dataset, we obtained a mAP of 55.2%.

The computer used for training the model, including the classification head and segmentation modules is
one of the servers at the Wong’s Lab at UCLA, which includes a set of two Intel Xeon E5 CPUs with 28 cores,
56 logical processors, and 128 GB of RAM. The model ran on an NVIDIA TITAN RTX GPU using Turing
architecture, 130 Tensor TFLOPs of performance, 576 tensor cores, and 24 GB of GDDR6 memory. The total
training time was ~14 h.

As shown by figure 3(a), once the object detection algorithm outputs the regions where the lensed fibers
and couplers are detected, their positions are marked. This information is used by the edge detector
algorithm to further refine the limits of the object borders. The output is a point that represents the tip of the
fiber as well as the center of the coupler.

In order to move the fiber to the initial position after the CNN image detection, the system checks the
microscope encoders as well as the piezoelectric actuators’ virtual encoders, and uses the chip border to
calculate a coordinate transformation matrix Ck; used to reference the measurements from the microscope
reference plane (M) to the piezoelectric actuators’ reference frame (P). Next, the fiber is moved close to the
coupler, and the measured power is monitored and mapped, creating a 3D power map as the fiber is moved
close to the chiplet. In order to avoid possible local minima or power reflection from an input fiber that is
positioned higher than the chiplet, the system uses the power models measured from figures 3(c) and (d).
Once the fiber is positioned and the power meter has detected laser transmission, there is first a small
optimization step, where the coupling is confirmed using the automated polarization controller and by
checking that the power measured is, in fact, dependent on polarization. This rough coupling step is followed
by a fine coupling step, where the program optimizes the power from both the input and output optical
fibers, and the system is ready for data acquisition. A more detailed view of the coupling algorithm can be
seen in figure 4, where a high-level Unified Modeling Language (UML) diagram of the calls that the main
coupling monitor module makes to the other modules in AtOMICS is presented.

2.3. AtOMICS system performance
Figures 5(a)—(d) show some examples of images taken with AtOMICS during regular program operation. As
shown, the couplers and the optical fibers have been positioned close together, inside the system’s
field-of-view, and the image detection algorithm has run. The two lensed optical fibers are now correctly
detected and they can be positioned to be coupled by setting the correct option for calibration. After the
different components have been detected, the next step is shown in figures 5(e) and (f), where the edge
detection algorithm has been run for further position refinement.

For the current tests, AtOMICs has been run on an Intel Core i7 processor with 64 Gb of RAM, in our
setup computer at the Wong’s Lab in UCLA. The Mask R-CNN model used has a size of 256 Mb, and the
classification head is around 92 Mb. The other modules of the AtOMICS system are lighter and use less than
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need to be recalculated, to determine the accurate position of the components to be tested. This information is used to locate the
optical fibers close to the edge coupler of the transducer to be tested. These steps constitute the rough coupling section. Once the
position is confirmed, and the HAL can provide optical intensity data, the power optimization module is run, and used to refine
the position of the optical fibers. This constitutes the fine coupling step, and is repeated until the maximum possible power has
been achieved.

coupler

coupler N coupler

coupler

Figure 5. AtOMICS lensed fiber and inverse tapered couplers detection. (a)—(d) Images taken during the operation of the system.
The system uses the camera and the object detection convolutional neural network (CNN) to locate the lensed fibers as well as the
couplers in the images. The system can detect multiple occurrences of a similar object inside the frame. (e) and (f), edge detection
inside the different regions. The coordinates of the fiber tip and the chip couplers, as well as the edge of the chiplets are calculated
and sent as input to the system to plan the movements.
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Figure 6. AtOMICS initial and long-term coupling. (a) Coupling process for fine-tuning. After light is detected and the
polarization dependence has been confirmed, the system starts to optimize the coupling power. A sequence of movements is
performed by both piezoelectric towers to position the optical fibers in an optimal position relative to the inverse couplers. A
movement sequence example is shown for a process that takes around 110 s to converge. (b) Example of coupling process
maintained. Once the system has been coupled, AtOMICS can maintain coupling for extended periods of time depending on the
testing. Some actions can be configured so that the program can adjust to the experiment being performed and does not interpret
a sudden loss of power due to experimental conditions changing, as a decoupling event. The trace shows a small example where
the system has been told to recouple when power is below —31.5 dBm and stop when the recovered power is —31 dBm. Recovering
in this example takes around 50 s. (c) Long-term coupling monitoring and power conservation in-between a set threshold. The
figure shows AtOMICS running for a 24 h period. Events are shown where the system takes control of the experiment to monitor
the total transmitted power from the optical switch. Two coupling intervention events are seen performed by the system. The first
event requires multiple movements, but the second is completed with only three. (d) Figure shows the monitored power and the
recorded pressure inside the system for a 24 h period during an experiment. A 2 mTorr pressure shift is recorded for a 24 h period,
and the power monitored is also recorded. A change in power that occurs at &5 and ~17.5 h can be seen, which eventually
requires intervention from the program. Data in the figure corresponds with the piezoelectric movements performed in part (c).

200 Mb of RAM. Even though the presented Mask R-CNN model can have a frame rate of up to 5 fps, as
detailed in table 1, the needed frame rate for this application is lower, at around 0.2 fps, as the movements of
the piezo electric stages take around 2-5 s, and the position of the fiber does not need faster actualizations.

The operation of AtOMICS can be seen in figure 6, where panel a shows a sample fine-tuning coupling
process in which the system optimizes the transmission by moving the different actuators from both the
output and input lensed fibers in sequence. In this example, the different axes are marked by different colors,
and the system moves them in sequence, optimizing the position of the fiber. After each movement is
performed, the system checks the optical power transmission and averages it over a few measurements in
order to get a stable reading. The time to take a reading, in this case, is ~3 s, and the total coupling time is
108 s.

AtOMICS can also operate in power monitor mode in order to maintain the coupling on the optical
fibers for extended data acquisition times. Figure 6(b) shows an example of a recoupling process where the
lower power threshold has been set at —1.5 dBm, and the system is expected to couple back to 0 dBm. As
shown, the system triggers at around 5 s and moves the z-axis of the input fiber (right fiber in figure 1(b)).
Since this (represented by the bright green upright triangle) produces a decrease in power, it continues with
the z-axis on the output side (left fiber in figure 1(b)). The system finalizes the series of movements with the
y-axis of the input fiber, where the required coupling power is obtained. Subsequent motions such as the
output fiber y-axis, input x-axis, and output x-axis are not needed, and thus the system exits the coupling
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mode to continue monitoring the stability of the test silicon photonics transducer. The total recovery time is
around 55 s.

An example of a longer transmission monitoring case is presented in figures 6(c) and (d). The presented
data corresponds to a 24 h period where the program is configured to monitor the transmission power
output from the device and recouple it if necessary. In addition, it takes back full control to monitor the full
power every 3 h. The corresponding recorded pressure and monitored power data are presented in
figure 6(d). As shown in the upper subpanel of this figure, the pressure during a one-day time period is
cyclical, and the peak-to-peak variation corresponds to ~2 mTorr. The lower subpanel shows the monitored
power by the system, which corresponds to only a fraction of the total power since most of it goes to the
optical detector through the switch. From time ¢ = 0 h., the monitored power decreases by ~2 dB until
slightly after # = 5.3 h., wherein the system retakes control and recouples the system (the corresponding
sequence of movements performed is noted in figure 6(c)). After the system is recoupled, the monitor power
is constant for the next 10 h, where the system only does minor checks. After ~10 h, power starts to decrease,
which is an event that could have been triggered by a matching change in chamber pressure as noted in the
upper panel. Again, AtOMICS takes control of the system and recouples above the programmed threshold.
Continuous coupling and long-term power stabilization have been obtained. Further experiments have
tested the performance of the system across time spans in the order of months with successfully maintained
and stabilized fiber-chip-fiber coupling results.

3. Conclusion

In this work we present an Automated Optomechanical Intelligent Coupling System suitable for testing of
silicon photonic chiplets that uses edge coupling through lensed optical fibers. The system uses a variation of
the Faster R-CNN object detection architecture combined with post-processing algorithms in order to
determine the position of the different elements and track them as they move them across the testing setup
for automated and optimized laser chip coupling. The system is capable of precision fiber-to-chip alignment
automatically and maintaining the alignment for time spans in the order of months tested. This system can
aid in the self-testing and screening of silicon photonics devices in production and in applications where
active, long-term alignment is required.
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