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Mesoscopic chaos mediated by Drude electron-
hole plasma in silicon optomechanical oscillators
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Chaos has revolutionized the field of nonlinear science and stimulated foundational studies

from neural networks, extreme event statistics, to physics of electron transport.

Recent studies in cavity optomechanics provide a new platform to uncover quintessential

architectures of chaos generation and the underlying physics. Here, we report the generation

of dynamical chaos in silicon-based monolithic optomechanical oscillators, enabled by the

strong and coupled nonlinearities of two-photon absorption induced Drude electron–hole

plasma. Deterministic chaotic oscillation is achieved, and statistical and entropic

characterization quantifies the chaos complexity at 60 fJ intracavity energies. The correlation

dimension D2 is determined at 1.67 for the chaotic attractor, along with a maximal Lyapunov

exponent rate of about 2.94 times the fundamental optomechanical oscillation for fast

adjacent trajectory divergence. Nonlinear dynamical maps demonstrate the subharmonics,

bifurcations and stable regimes, along with distinct transitional routes into chaos. This

provides a CMOS-compatible and scalable architecture for understanding complex dynamics

on the mesoscopic scale.
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I
nvestigation of chaos and the associated nonlinear dynamics
has spurred fundamental progress of science and technology.
It brought new perspectives in a multitude of fields spanning

from recurrent neural networks1, relativistic billiards-like electron
transport2, fractal space and time3 to self-organization in the
natural sciences4, amongst others. Chaos in optical systems has
emerged and drawn much attention owing to its unique features
and broad applications, including chaos-based synchronized
secure optical communications5–7, high-performance light
detection and range finding8 and ultrafast physical random bit
generation9. Studies of chaos generation in III–V laser
components have further shown progress in harnessing the
broadband carriers in both the near infrared and the mid-infrared
wavelength ranges10–17, although the challenges of monolithic
integration and circumventing the seemingly universal
requirement of external perturbations remain to be solved.

Concurrently, significant efforts in nanofabrication technology
and cavity optomechanics have led to the demonstration of
regenerative oscillations in mesoscopic resonators18–21. Excited
by centrifugal radiation pressure, optomechanical chaotic
quivering was experimentally observed in toroidal whispering-
gallery-mode microcavities22. Recently, in the toroidal
whispering-gallery-mode microcavity, stochastic resonance and
chaos have been transferred between two optical fields23 with the
chaotic physical basis through a strong nonlinear optical Kerr
response from the nonlinear coupling of the optical and
mechanical modes. This is complemented by recent theoretical
studies on chaos including electro-optomechanical systems and
potential routes into chaos24,25.

Here, we couple the prior single optomechanical basis with a
second basis—that of electron–hole plasma oscillations in
the same cavity—to deterministically generate dynamical
chaos in a silicon photonic crystal cavity. Differing from
the prior studies, the silicon experimental platform enables
electron–hole plasma dynamical generation, destabilizing the
system dynamics and provides a route for chip-scale planar
electronic–photonic integration. Our photonic crystal implemen-
tation is based on a slot-type optomechanical (OM) cavity
with sub-wavelength [E0.051(l/nair)3] modal volumes V, and
high quality factor-to-volume ratios Q/V (refs 26,27).
This provides strong optical gradient oscillation26,28 to achieve
operating intracavity energies of B60 fJ and enables near-single-
mode operation. Our two-oscillator OM cavity is designed with
comparable dynamical oscillation timescales between the Drude
electron–hole plasma and radiation pressure optomechanics,
which allows the chaotic attractors and unique trajectories to be
uncovered. We present the statistical and entropic characteristics
of the nonlinear dynamical regimes and illustrate the transition
routes into and out of chaos. Our first-principles numerical
modelling, including coupled oscillations in seemingly unrelated
degrees of freedom (two-photon-induced free-carrier and thermal
dynamics with radiation pressure dynamics) capture the
experimental observations, the multi-period orbits and the
trajectory divergence into chaotic states.

Results
Experimental observation of chaos. Figure 1a shows the
scanning electron micrograph of the slot-type optomechanical
photonic crystal cavity mediated by Drude electron–hole
plasma investigated in this study. The air-bridged photonic
crystal cavity is introduced with shifted-centre air holes that
are shifted by 15, 10 and 5 nm, respectively, as shown in Fig. 1b.
The width-modulated line-defect photonic crystal cavity
design has a total quality factor Q of 54,300 (Fig. 1c) and a
sub-wavelength modal volume of 0.051(l/nair)3 (Fig. 1b inset) at

the 1572.8 nm resonance wavelength (lo, with effective mode
index n). The optomechanical cavity consists of two
(16.0 mm� 5.5 mm� 250 nm) micromechanical photonic crystal
slabs, separated by a 120 nm slot width across the photonic crystal
line defect. The in-plane mechanical mode has a 112 MHz
fundamental resonance and, when driven into the regenerative
oscillation regime, has a narrow sub-15-Hz linewidth at ambient
pressure and room temperature29. The large optical field gradient
from the tight slot cavity photon confinement enables a large
coherent optomechanical coupling strength, g0, of B690 kHz
(detailed in Supplementary Note 4), resulting in low-threshold
optomechanical oscillation (OMO)26–29. Concurrently, on the
same cavity, strong nonlinearities such as two-photon absorption
(TPA), free-carrier and thermo-optic dynamical effects lead to
modulation of the intracavity field30. Note the characteristic
timescales of the OMO and the photonic crystal carrier dynamics
are made comparable through our designed mechanical modes
and intrinsic free-carrier diffusion times, enabling the coupled
equations of motion to have sufficient overlap and degrees of
freedom for chaos generation.

Figure 1d depicts the transition into chaos as the pump
detuning to the cavity resonance D (¼ lL� l0, where lL is the
injection light wavelength) is scanned from 0.2 to 4.2 nm with the
injection power fixed at 1.26 mW detailed in Methods section).
The chaos region as well as the associated dynamical transitional
states can be identified. First, a stable pure fundamental OMO at
112 MHz is observed at the beginning of the detuning drive. With
increased detuning, aperiodic and sub-oscillatory structures
emerges when D is set in the range of 1.2–2.0 nm. Unstable
pulses (USP) occur first, before the system is driven into a series
of stable sub-harmonic pulse states such as the fomo/4 states
(oscillation period being four times the OMO period), the fomo/3
states and the fomo/2 states, respectively. For detuning D between
2.0 and 2.33 nm, the system exhibits a chaos region characterized
by both a broadband radio frequency (RF) spectrum and an
intricate phase portrait. For detuning D42.33 nm, the system is
driven to exit the chaos region by evolving into a fomo/2 state
(D¼ 2.33–3.2 nm) before cumulating into a self-induced optical
modulation (SOM) state (D¼ 3.2–4.2 nm)30,31. Of note, the
oscillation period of SOM (B13–17 ns), mainly determined by
the Drude plasma effect and the thermal dissipation rate, is
comparable with that of OMO (B9 ns). The close oscillation
frequencies of SOM and OMO facilitate their effective interaction
in the photonic crystal nanocavity and the occurrence of
chaos4,18.

Figure 2 shows an example chaotic oscillation in the temporal
domain and its RF frequency spectrum with the recorded raw
temporal waveform shown in Fig. 2a, illustrating the irregular and
intricate fluctuations. Figure 2b presents the phase portrait of
chaos in a two-dimensional plane spanned by the power of the
temporal waveform (P, horizontal axis) and its first time
derivative (s, vertical axis)32. The reconstructed trajectory is
useful for illustrating the complex geometrical and topological
structure of the strange attractor, showing the local instability, yet
global stable nature, of a chaos structure32. To reveal the
topological structure of chaos attractors, a state-space procedure
is implemented to average the temporal waveform points in an
m-dimensional embedded space32 (detailed in Supplementary
Note 1) by removing stochastic noise from the recorded raw data.
The noise removal enables a clear depiction of the topological
structure of the attractor and is also useful for the estimation of
correlation dimension and Kolmogorov entropy, the most
commonly used measures of the strangeness of chaotic
attractors and the randomness of chaos33–36. Furthermore,
Fig. 2c shows the corresponding RF spectrum, where the signal
distributes broadly and extends up to the cutoff frequency of the
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Figure 1 | Observations of dynamical chaos in mesoscopic optomechanical cavities. (a) Scanning electron micrograph of the optomechanical cavity.

Scale bar, 5 mm. (b) Zoom-in of 120 nm slot cavity with localized resonant mode formed by perturbed neighbouring holes at the cavity centre, with

amplitude displacements denoted by the coloured arrows (yellow: 15 nm; green: 10 nm; and red: 5 nm). The lattice constant is 500 nm and the ratio

between hole radius and lattice constant is 0.34. Scale bar, 500 nm. Inset: finite-element model of the fundamental mechanical mode field, with normalized

displacement magnitude shown in colour (red as maximum displacement and blue as zero displacement). (c) Measured optical transmission spectrum

with a cold cavity loaded quality factor Q of 54,300 under low injection power and centred at 1572.8 nm. Inset: |E|2 field distribution of the fundamental

optical resonance, with normalized intensity magnitude shown in colour (red as maximum intensity and white as zero intensity). (d) 2D RF spectral

map illustrating the evolution of nonlinear and chaotic dynamics, detailed as OMO (OMO) state - USP state-fomo/4 state-fomo/3 state-chaos state-fomo/2

state-SOM state, under controlled laser-cavity detuning D and at 1.26 mW injection power.
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Figure 2 | Frequency-time characterization of the chaos. (a) Raw temporal waveform of chaotic output. (b) Corresponding phase portraits of the

noise-reduced temporal waveform, where the colour evolution from cyan to orange to red is proportional to the data point density (DPD) in the measured

temporal orbit. (c) Corresponding measured RF power spectral density (PSD). The grey curve is the reference background noise floor.
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measurement instrumentation, showing a hallmark spectral
feature of chaos.

Figure 3 illustrates the detailed properties of several different
dynamical states, including RF spectra, temporal waveforms and
phase portraits. First, Fig. 3a shows the frequency and temporal
characteristics of the fomo/2 state. We observe three characteristic
features of the fomo/2 state:distinct fomo/2 components in the RF
spectrum (Fig. 3a), pulses with period (E17.8 ns) at two times the
OMO period (E8.9 ns) in the temporal waveform (Fig. 3b), and
clear limit cycle37 features in the phase portrait (Fig. 3c).
Similarly, Fig. 3d–f,g–i show the frequency spectra, the temporal
waveforms at a third and a quarter of the fundamental oscillation,
and the corresponding limit cycle phase portraits of the
transitional fomo/3 and fomo/4 states, respectively. We note the
satellite bumps next to the main peaks in the temporal
waveforms; they represent the relatively weak OMO
fundamental oscillations. Figure 3j,k next show the frequency
and temporal features of the chaos state, where a broadband
spectrum and a fluctuating temporal waveform are observed. In
the phase portrait (Fig. 3l), the trajectory evolves intricately and
scatters widely in phase space, being quite different from other
periodical dynamics. With this slot cavity and at 1.26 mW
injection power (B60 fJ intracavity energy), the specific transition
route is OMO-USP-fomo/4-fomo/3-fomo/2-chaos-fomo/2-SOM,
exhibiting a clear sub-harmonic route to chaos. The complete
set of routing states into/out of chaos is detailed in Supplementary
Note 2.

Dynamical characterization of chaos. Next, statistical analysis is
performed to uncover the detailed dynamical properties of the

chaotic states. A three-dimensional phase space is constructed in
Fig. 4a, in a volumetric space spanned by the power (P), the first
time derivative of P (s) and the second time derivative of P (x).
The green curves are the projections of the trajectory onto each of
the three phase planes, showing the geometric structures. Three
statistical measures, Lyapunov exponents (LEs), correlation
dimension and Kolmogorov entropy, are commonly employed to
illustrate and characterize the dynamical properties of chaos32–38.
Details of these measures are provided in Supplementary Note 1.
LEs, which describe the divergence rate of nearby attractor
trajectories, are the most widely employed criteria in defining
chaos33. In Fig. 4b, we show the calculated LEs, converging to
values l1E0.329, l2E� 0.087 and l3E� 0.946 ns� 1

respectively, or equivalently, when expressed on the intrinsic
optomechanical photonic crystal cavity, timescale
(tomo¼ fomo

� 1E8.9 ns) l1E2.94tomo
� 1, l2E� 0.78tomo

� 1 and
l3E� 8.45tomo

� 1. The maximal LE is positive, illustrating a fast
divergence rate between adjacent orbits and indicating that the
system is chaotic32,33. We further analyse the correlation
dimension D2:

D2¼ lim
D!1
r!0

d ln CDðrÞð Þ
d lnðrÞ ð1Þ

where CD is the correlation integral of vector size D in an r radius
sphere and d is the Euclidian norm distance36. A conservative
estimate of the attractor correlation dimension is implemented
through the Grassberger-Procaccia algorithm36,38 as detailed in
Supplementary Note 1. As shown in Fig. 4c, the correlation
integrals CD vary with sphere radius r. In Fig. 4d, the plot of the
correlation integral slope versus sphere radius r is obtained by
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extracting the slope from Fig. 4c. A clear plateau of the
correlation integral slope is observed, supporting the estimated
value of D2 at B1.67 (D2E2.0 without noise filtering).
The correlation dimension D2 highlights the fractal
dimensionality of the attractor and demonstrates the
strangeness of the complex geometrical structure34. We note
that this D2 value is already higher than that of several canonical
chaos structures such as the Hénon map (at 1.21), the logistic
map (at 0.5), and the Kaplan-Yorke map (at 1.42), and is even
close to that of Lorenz chaos (at 2.05)36.

Furthermore the waveform unpredictability can be
characterized by the second-order Renyi approximation of the
Kolmogorov entropy K2:

K2¼ lim
D!1
r!0

1
t

ln
CDðrÞ

CDþ 1ðrÞ

� �
ð2Þ

where t is the time series sampling rate, a measurement of
the system uncertainty and a sufficient condition for chaos38.
A positive K2 is characteristic of a chaotic system, while a
completely ordered system and a totally random system will have
K2¼ 0 and K2¼N respectively. With the Grassberger-Procaccia
algorithm, K2 is calculated as E0.17 ns� 1 or expressed
equivalently as E1.52tomo

� 1, representing that the mean
divergence rate of the orbit section (with adjoining point pairs
in the phase space) is rapid within 1.52 times the fundamental
OMO period. It characterizes the gross expansion of the original
adjacent states on the attractor38 and, therefore, indicates the
significant unpredictability in the dynamical process of such
solid-state systems.

Theoretical simulation of chaos. To further support the physical
observations, we model the dynamics of the optomechanical
photonic crystal cavity system under the time-domain nonlinear
coupled mode formalism, taking into account the OMO21,

TPA31, free-carrier and thermo-optic dynamics30,31:

d2x
dt2
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dx
dt
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where x, A, N and DT represent respectively the motional
displacement, the intracavity E-field amplitude, the free-carrier
density and the cavity temperature variation. do¼oL�o0 is the
detuning between injection light, oL, and photonic crystal cavity
resonance, o0, and Pin is the injected optical power (detailed in
Supplementary Note 3, Supplementary Table 1). Equation (3)
describes the optically driven damped mechanical harmonic
oscillation with self-sustained OMO oscillations when pumped
above threshold. The mechanical oscillations then in turn result
in modulation of the intracavity optical field (first term on the
right-hand side of equation (4)). On the other hand, the plasma
induced thermal-optic effect and free-carrier dispersion in the
cavity (second and third terms on the right-hand side of
equation (4)) lead to another amplitude modulation of the
intracavity field. Here, the high-density Drude plasma is
generated by the strong TPA in silicon (equation (5)). With the
increased intracavity power, the free-carrier dispersion effect
leads to blue-shifts of the cavity resonance while the free-carrier
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absorption induced thermo-optic effect results in red-shifts of the
cavity resonance. The dynamical interplay between these two
effects results in the regenerative SOM (refs 30,31). The
mechanism is detailed in Supplementary Fig. 6 and
Supplementary Note 6. We note that our photonic crystal
design ensures that the characteristic timescales of the SOM and
OMO oscillations are on the same order of magnitude
(Supplementary Fig. 8), strengthening the effective
inter-oscillator coupling. The coexistence of OMO and SOM
mechanisms adds extra degrees of freedom to the dynamic space
of system and results in increased susceptibility to destabilization
(detailed in Supplementary Note 2)16,18,21.When the drive power
is between the SOM and OMO thresholds, TPA-associated
amplitude modulations disrupt the OMO rhythm, breaking the
closed OMO limit cycles and creating the non-repeating chaotic
oscillations. On the other hand, if the frequency ratio between
OMO and SOM is close to a rational value, they will lock each
other based on the harmonic frequency locking phenomena39,40.
Consequently, different sub-harmonic fomo states are also
observed in Fig. 3. Effects of the Drude free-carrier plasma, the
detuning do, the optomechanical coupling strength g0 and the
injected drive power Pin on the chaotic transitions and routes are
detailed in Supplementary Notes 4–7.

Figure 4e shows the dynamical distribution map simulated
numerically and parametrically with the normalized detuning
do/gi versus injection power Pin, where gi is the intrinsic cavity
linewidth from linear losses. The various regimes are denoted
with different colours, and rigorously identified through entropic
analysis of the temporal waveform uncertainty and periodicity of
the Fourier spectrum. The temporal waveforms are often strongly
periodic in the limit cycle states (such as OMO and USP) and
have low entropy (indicated by the darker colours), while
the chaotic oscillation has a significant uncertainty and high
entropy (indicated by the brighter colours). In Fig. 4e, the
crescent-shaped region (in bright orange) indicates the
parametric conditions of the complex chaos state. Around this
region, there are rich transitional dynamics related to chaos,
thereby enabling different routes into or out of chaos with
different parameter scanning approaches. When the pump power
is 1.26 mW, the numerical model predicts a bifurcation transition
to chaos via states OMO-USP-fomo/3-fomo/2-chaos-SOM as a
function of detuning, in a qualitative agreement with the
experimental observations. It is of note that the system of
coupled equations does not involve any initial noise terms,
illustrating the deterministic nature of the obtained chaotic
solutions.

Discussion
We demonstrate chaos generation in mesoscopic silicon
optomechanics achieved through single-cavity coupled oscilla-
tions between radiation-pressure- and two-photon-induced
free-carrier dynamics. Chaos generation is observed at 60 fJ
intracavity energies, with a correlation dimension D2 determined
at B1.67. The maximal LE rate is measured at 2.94 times the
fundamental OMO, and the second-order Renyi estimate of the
Kolmogorov entropy K2 is determined at 1.9 times the
fundamental OMO, both showing fast adjacent trajectory
divergence into the chaotic states. Furthermore, we route the
chaos through unstable states and fractional subharmonics, tuned
deterministically through the drive-laser detuning and intracavity
energies. These observations set the path towards synchronized
mesoscopic chaos generators for science of nonlinear dynamics
and potential applications in secure and sensing application, in
light of recent works about gigahertz OMOs41 and
synchronization of coupled optomechanical oscillators42.

Methods
Device design and fabrication. The optomechanical photonic crystal cavity is
fabricated with a CMOS-compatible process on 8-inch silicon wafers at the
foundry, using 248 nm deep-ultraviolet lithography and reactive ion etching on
250 nm thickness silicon-on-insulator wafers. To realize the critical 120 nm slot
width, the resist profile is patterned with a 185 nm slot linewidth, then transferred
into a sloped oxide etch. The resulting bottom 120 nm oxide gap is etched into the
silicon device layer through tight process control. Multiple planarization steps
enable high-yield of the multi-step optomechanical photonic crystal fabrication.
The optical input/output couplers are realized with silicon inverse tapers and oxide
overcladding coupler waveguides. The optomechanical photonic crystal cavities are
released by timed buffered oxide etch of the undercladding oxide.

Measurement set-up. The drive laser is a tunable Santec TSL-510C laser
(1,510–1,630 nm), which is also used to measure the optical transmission spectra.
The drive laser is first amplified by a C-band erbium-doped fibre amplifier and
then injected into the slot-type photonic crystal cavity with a coupling lens placed
on an adjustable 25-nm precision stage. A—fibre polarization controller with a
prism polarizer selects the transverse-electric polarization state for the cavity mode.
The output transmission of the photonic crystal cavity is collected into fibre
through a coupling lens, an optical isolator, and then into a New Focus (Model
1811) detector, before an electronic spectrum analyzer (Agilent N9000A) and
time-domain digital oscilloscope (Tektronix TDS 7404) characterization and
statistical analysis.

Numerical simulations. The coupled equations (1)–(4) are numerically solved
with the fourth-order Runge-Kutta algorithm. The time discretization is set as 10 ps
and each simulated temporal waveform contains 107 data points (100 ms). The
simulated RF spectrum is calculated with the fast Fourier transform method, which
is a discrete Fourier transform algorithm to rapidly convert a signal from its time
domain to a representation in the frequency domain. In frequency domain, we can
easily get the spectral characteristics of the signal. The long time span of the
temporal waveform (at 100ms) is also necessary for resolving the 25 kHz spectral
features and converging in the subsequent statistical analyses.

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information files.
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Supplementary Note 1: Experimental data and chaos identification 

In this section we analyze the experimentally recorded temporal waveforms. There are 

various kinds of noise processes in the experimental setup and measurements which can 

affect the process of chaos identification. Therefore it is necessary to reduce the noise in 

temporal waveforms. Here, the length of temporal waveforms is recorded over 10
5
 data 

points with a high-sensitivity photodiode and a digital oscilloscope at 10 Gs/s sampling rate. 

We use the state-space averaging method to discriminate the stochastic noise from the chaotic 

waveform [1,2]. In this method, the nth data point of the recorded temporal waveforms is 

denoted by Xn. The noise-reduced data points are expressed as
nX . A sliding window is tied to 

Xn with a width ±m points in the state-space. Then, 
nX  is expressed as [S1,S2]:  

( )

( )

N m

k nk m
n N m

nk m

X k
X

k






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
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, and 2 2( ) exp( ( ) / )
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n k j n j noisej m
k X X  
            (1) 

The data point 
nX  averages the dataset Xn in a sliding ±m points window around Xn in the 

m-dimensional embedding space. ωn(k) gives the nearby points different weight; the nearer 

points have more weight. For our data, m is set as 10, σnoise is the noise standard deviation and 

at 0.2 optimally, while maintaining the dynamical complexity of chaotic temporal waveform 

as shown in Figure 2b of the main text. 

To identify the chaotic dynamics, we calculated the Lyapunov exponents (LEs) of the 

recorded time series. The LEs are critical measures of dynamical stability of a system. In 

mathematics, the LEs characterize quantitatively the rate of separation of infinitesimally 

close trajectories. Negative LEs are characteristic of dissipative stable systems. The more 

negative the LEs, the better the stability. Zero LE is characteristic of a conserved stable 

system. Positive LEs reveal the orbit is unstable and chaotic. Nearby points, no matter how 

close, will diverge to any arbitrary separation. Two trajectories in phase space with initial 

separation δZ0 diverge (being treated with the linear approximation) at a rate given by [2]: 

0( ) tZ t e Z  , where λ is the LE. In the multi-dimensional phase space, the rate of 

separation should be different for different orientations of the initial separation vector. Thus 

http://en.wikipedia.org/wiki/Trajectory
http://en.wikipedia.org/wiki/Phase_space
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there is a spectrum of Lyapunov exponents [3]. The largest of the LEs can be called the 

maximal Lyapunov exponent (MLE), and determines the notion of predictability for a 

dynamical system. A positive MLE is usually taken as an indication that the system is chaotic 

[2].  

We next implement the canonical Grassberger-Procaccia (G-P) algorithm [4-6] to 

estimate the correlation dimension D2 (close to the fractal dimension of attractor) and the K2 

entropy (close to the Kolmogorov entropy) [4-6]. For example, if we have a set of random 

points being distributed on a triangle face embedded in three-dimensional space or 

four-dimensional space, the correlation dimension will always be 2. The correlation 

dimension has the advantage of quick calculation, of only needing a small number of points, 

and often agreeing well with the results of other dimension estimation methods [6]. The 

convergence of the G-P algorithm is sufficient to demonstrate chaos and estimate its finite 

correlation dimension. During calculation, the value of D2 could be calculated from the 

integral CD(r): 

2
,

1
( ) ( ( ( , ) ))D n m

n m

C r d X X r
N

                                          (2) 

This formula is a numerical computation of the average number of vectors that could be 

found within a sphere of radius r around a given vector. Distance d is the Euclidian norm. 

From the analysis of Grassberger-Procaccia [4-6], we have:  
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where τ is the sampling rate of the time series. The formulas converge with increasing D size. 

In our calculation we show the results for D between 15 and 20.  

Supplementary Note 2: Detailed route into and out of chaos 

The governing dynamical equations have been described in Ref. [7-9]. In our case, the 

small modal volume and high Q of photonic crystal (PhC) cavity result in the high intensity 

of local optical field, optomechanical oscillations [8] and significant two-photon absorption 

(TPA) effect [7]. Next, TPA mainly produces the heat and free carriers [7, 9]. The dispersion 

induced by the Kerr effect can be ignored since it is orders of magnitude weaker than the 

above nonlinearites in silicon [7, 8]. Next, to obtain the main text equations (3) to (6), we 
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consider the mechanical system is a second-order system (represented by x). With the 

slowly-varying envelope approximation, the PhC intracavity field is represented by A and the 

free-carrier density (represented by N) and temperature variation (represented by ΔT) of the 

PhC cavity is added. One then adds two equations into the equations given in Ref. [7-9], 

which later become the time-domain nonlinear coupled equations (3) to (6) shown in the 

main text.  

To further illustrate the detailed route into and out of chaos [10-27], a typical sequence 

of dynamics is given in Supplementary Figure 1. From top to bottom, the injection 

wavelength detuning is (a) 0.910 nm, (b) 1.270 nm, (c) 1.394 nm, (d) 1.831 nm, (e) 2.071 nm, 

(f) 2.285 nm, (g) 2.406 nm, (h) 4.070 nm and (i) 5.910 nm respectively. The system is 

measured both in the frequency-domain (the radio frequency (RF) spectra and in the 

time-domain (the temporal waveforms and the phase portraits). Based on the unique 

frequency-temporal characteristics, the dynamical states can be identified. In Supplementary 

Figure 1, several dynamical states can be identified as: (a) the optomechanic oscillation 

(OMO) state, (b) the unstable pulsation state (USP), (c) the fomo/4 state, (d) the fomo/3 state, (e) 

the fomo/2 state, (f) the chaos state (chaos), (g) the fomo/2 state again, (h) the self-induced 

optical modulation (SOM) state, and (i) the stable state (S) respectively. Specifically, for the 

OMO state, as shown in Supplementary Figure 1a, there is a weak but clear frequency peak 

shows out at 112MHz. For USP state as shown in Supplementary Figure 1b, the pulses are 

unstable in both amplitude and period. This is the reason why it is referred to unstable pulses 

(USP) state. Comparing Supplementary Figure 1b and Supplementary Figure 1c, one can find 

a resemblance of the temporal waveforms and the phase portraits between the USPs state and 

fomo/4 state. It indicates that the USP state is a transition state into the fomo/4 state in PhC-OM 

system. In brief, the OMO cavity shows rich nonlinear dynamics, following a route of OMO - 

USP - fomo/4 - fomo/3 - fomo/2 – chaos - fomo/2 – SOM - S. Three 2D RF spectral evolution maps 

of nonlinear and chaotic dynamics, measured with different injection powers, are shown in 

Supplementary Figure 2(a, b & c). Based on these evolution maps, one can see that the 

parameter range covered by the various nonlinear dynamical states is gradually increased and 

extended to the longer wavelength region with increasing the injection power. Furthermore, 
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we also demonstrate another dynamical route of an optomechanical photonic crystal cavity by 

scanning the injection power and with the initial low-power detuning  fixed at 0.87 nm. In 

Supplementary Figure 3, from top to bottom, the measured dynamical states follow the 

sequences of: (a) the fomo/3 state, (b) the chaos state, (c) the fomo/2 state, (d) the SOM state, 

and finally (e) the stable state (pre-OMO state without dynamical fluctuations) S.  
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Supplementary Figure 1. Detailed dynamical transition. The detuning  varies from  (a) to 

(i) as: (a) 0.910 nm, (b) 1.270 nm, (c) 1.394 nm, (d) 1.831 nm, (e) 2.071 nm, (f) 2.285 nm, (g) 

2.406 nm, (h) 4.070 nm, and (i) 5.910 nm respectively. The injection power is kept constant 
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at 1.26 mW under different injection detuning. The first column shows the measured radio 

frequency (RF) spectra of different dynamical states, where the grey curves are the 

background noise floor. The second and third columns show the corresponding temporal 

waveforms and phase portraits, where the blue dots are the measured data and the solid red 

curves are the noise-reduced trajectories. 

 

 

Supplementary Figure 2. 2D RF spectra evolution map of nonlinear dynamics. The 

injection power decreases from top to bottom as: (a) 0.8 mW, (b) 0.5mW, and (c) 0.32 mW 

respectively. The  dynamics are detailed as optomechanical oscillation (OMO) state, 

unstable pulse (USP) state, fomo/4 state - fomo/3 state, chaos state, fomo/2 state and self-induced 

optical modulation (SOM) state, respectively. 
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Supplementary Figure 3. Dynamical evolution under different injection powers. The 

injection power increases from top to bottom as: (a) 0.68 mW, (b) 0.43 mW, (c) 0.38 mW, 

(d) 0.22 mW and (e) 0.15 mW respectively. The initial low-power detuning  is set at 0.87 

nm. The (a, b, c, d and e) shows the measured RF spectra, where the grey curves are the 

background noise floor. The (f, g, h, i and j) show the noise-reduced temporal waveforms 

(red curves), and the (k, l, m, n and o) show the corresponding phase portraits. 

Physically, there are two mechanisms in our slot-type optomechanical PhC chip which 

consists of the micro-mechanical resonator and the high Q/V PhC optical resonator (the 

detailed coupling scheme is shown in Supplementary Figure 4). Firstly, for a 

micro-mechanical resonator, with high Q/V ratio and sub-wavelength optical confinement, 

large intracavity radiation pressure forces can modify the motion of micro-mechanical 

resonators (labeled as x in equation 3 of the main text) [28, 29]. When the input optical power 

exceeds the intrinsic mechanical damping losses, a self-sustained oscillation can be formed 

[29, 30], and is called the OMO limit-cycle from the dynamical point of view. The OMO 

limit-cycle modulates the PhC optical field (labeled as A in equation 4 of the main text), and 

is read out by measuring the optical transmission signal.  
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Secondly, the high Q/V PhC optical resonator is also affected by a series of silicon-based 

nonlinearities (the nonlinear coupling is shown in Supplementary Figure 4), such as the 

two-photon absorption (TPA), Drude plasma free-carrier dispersion (FCD), free-carrier 

absorption (FCA), and the thermo-optic effect [2]. Mainly, the PhC optical mode resonance 

can be blue-shifted by FCD and red-shifted by the TPA- and FCA-induced thermo-optic 

effect [7, 8]. This generates a competing relationship between nonlinearities, resulting in a 

temporal modulation on the PhC optical field. This modulation is called the self-induced 

optical modulation (SOM) [7, 8]. Next, let us illustrate the SOM process in detail. Initially, a 

slight red detuning exists between PhC cavity and input laser frequency. A large TPA effect is 

introduced by the strong optical field in the PhC cavity. TPA generates a large free carrier 

density (labelled as N in equation 5 of main text). Then, the FCD mechanism and the FCA 

mechanism will dissipate the free carriers. Firstly, FCD mechanism will cause a rapidly 

blue-shift of PhC resonance. Secondly, the TPA and FCA will also heats the PhC cavity 

(labeled as ΔT in equation 6 of the main text), and introduce a slow red-shift of the PhC 

resonance through the thermo-optic effect. This red-shift will eventually stop the rapid 

blue-shift, leading to a red-shift of the PhC resonance. Thirdly, eventually the PhC resonance 

red-shifts over the input laser frequency, and results in a rapid drop of PhC intracavity optical 

field with a large residual red-shift. Fourthly, the large residual red-shift and thermal energy 

slowly decays through thermal radiation and thermal conduction of in the silicon structure. 

Finally, the PhC cavity has cooled and is slightly red-detuned again from the input laser 

frequency. A SOM type limit-cycle consequently forms. Such SOM limit-cycle will also 

modulate the PhC optical field. From the dynamical point of view, the OMO limit-cycle and 

SOM limit-cycle are the degrees of freedom of the PhC optical field. If OMO is absent, the 

PhC chip will output the periodic SOM signal as shown in Ref. [7, 8]. The coexistence of 

OMO limit-cycle and SOM limit-cycle adds extra degrees of freedom to the dynamical space 

of the system and easily destabilizes the dynamics [19, 20, 22]. With effective coupling 

between OMO and silicon nonlinearities, and enough drive power above the OMO and SOM 

thresholds, TPA-associated modulations disrupt the OMO rhythm, breaking the OMO limit 

cycles and creating the non-periodical chaotic oscillations. 
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Supplementary Figure 4. The coupling mechanism of various nonlinearities. The 

nonlinearities and mechanical mode of the photonic-crystal optomechanical chip are all 

considered in our theoretical model [equations (3) to (6) of the main text], where the g0 is the 

optomechanics coupling strength, Γm is the mechanical dissipation rate, Ωm is the 

mechanical angular frequency, ΔT is the cavity temperature variation and N(t) is the 

free-carrier density. The intracavity optical field is modulated simultaneously both by the 

mechanical oscillation and by various silicon nonlinearities, such as the two-photon 

absorption, Drude plasma free-carrier dispersion, free-carrier absorption and the thermo-optic 

effect. Competitive coupling relationship exists between these nonlinearities, resulting in the 

complex chaos dynamics. 

 

Supplementary Note 3: Parameters of theoretical modelled and modeled transitional 

dynamical states 

Table 1 summarizes the parameters used in the numerical simulation under the nonlinear 

coupled mode theory formalism [31, 32]. Material constants are taken from Refs. [7, 8, 33, 

34]; other parameters are obtained by measurements, finite-element method (FEM) 

simulation (COMSOL Multiphysics), and the combination of simulations and experimental 

fitting. Note that the Kerr nonlinearity and Raman scattering are much weaker than the other 

nonlinearities and hence they are not included in our model [7, 8, 33, 34]. 

Supplementary Table 1. Modelling parameters. 

Parameter Physical meaning Value Source 
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Si  
Two-photon absorption (TPA) 

coefficient 
8.410

-12
 m/W material constant 

gn  Group index 3.476 material constant 

Si  
Free-carriers absorption (FCA) 

cross section 
110

-21
 m

2
 material constant 

Sin  Refractive index of Si 3.476 material constant 

Si  Density of material Si 2.3310
3
 kg/m

2
 material constant 

pc  Specific heat capacity 700 J/(kg K) material constant 

Sidn

dT

 Thermo-optic coefficient 1.8610
-4 

K
-1

 material constant 

Sidn

dN

 Free carrier coefficient -1.7310
-27 

m
3
 material constant 

o  Resonance wavelength 1572.8 nm measured 

i  Linear loss (radiation & abs.) 19 GHz measured 

m /2π Mechanical frequency 112 MHz measured 

0g  
Vacuum optomechanics 

(OM)coupling strength 
690 kHz estimated 

TPA  TPA confinement factor 0.8012 FEM 

TPAV  TPA mode volume 6.410
-19

 m
3
 FEM 

effm  Mechanical osc. effective mass 2.4 10
-14

 kg FEM 

FCA  FCA confinement factor 0.79 FEM 

FCAV  FCA mode volume 6.910
-19

 m
3
 FEM 

PhC  Thermal confinement factor 0.769 FEM 

fc  Free-carrier lifetime 150 ps fitted 

th  Thermal dissipation life time 9.7 ns fitted 

m /2 Mechanical dissipation rate 110 kHz estimated 
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e /2 External coupling rate 2.2 GHz estimated 

PhCV  Thermal mode volume 110
-18 

m
3
 estimated 

Supplementary Figure 5 shows an example of the simulated chaos and the associated 

dynamical transitions of the two-photon optomechanical photonic crystal cavity. 

Supplementary Figure 5a shows the pure OMO state. Next, Supplementary Figure 5b, 5c, 5d 

show the fomo/2 state, fomo/3 state and fomo/4 state respectively. Clear sub-harmonic frequency 

peaks can be observed in these Fourier transformed power spectra, and the corresponding 

phase portraits also characterize clearly the limit-cycle features. Supplementary Figure 5e 

gives the simulated chaotic oscillation; its power spectrum distributes continuously, being 

quite different from the discrete distribution spectrum. The temporal waveform 

(Supplementary Figure 5j) behaves intricately. Moreover, the corresponding phase orbit 

(Supplementary Figure 5o) consistently winds and stretches in the basin of the strange 

attractor; this induces the fractal structure [2, 6, 35]. These simulations confirm qualitatively 

the experimental observations of Figure 2 in the main text. In addition, we emphasize that the 

obtained chaos is deterministic since the simulation equations (3)-(6) are deterministic and do 

not contain any noise terms. 
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Supplementary Figure 5. Numerical simulations of chaotic output. (a-e): Fourier 

transformed power spectrum. (f-j): temporal waveform. (k-o): corresponding phase portrait, 

where the injection power Pin is 1 mW and normalized detuning δω /γi varies from top to 

bottom as: (a, f, k) 2, (b, g, i) 5.5, (c, h, m) 8.65, (d, i, n) 7.95, and (e, j, o) 10. The 

mechanical frequency Ωm/2π value is 110 MHz and other parameters are given in 

Supplementary Table 1. 

Supplementary Note 4: Effects of the optomechanics coupling strength go in chaotic 

transition and routes 

The large optomechanical (OM) coupling strength (g0) means the strong coupling 

between optical field and mechanical motion in the PhC nanocavity. The localized mode of 

the PhC-OM cavity has a much larger g0 than regular large Fabry-Perot cavities. The OM 

coupling strength (g0) is estimated using the phase modulation method described in [36, 37]: 

𝑔0
2 ≈

1

2𝑛𝑡ℎ

𝛷0
2𝛺𝑚𝑜𝑑

2
 

2

𝑆(𝛺𝑚) ×Г
𝑚

/4

𝑆(𝛺𝑚𝑜𝑑) × 𝑅𝐵𝑊
                          (4) 

where 𝑛 is the average phonon occupancy, ϕ0 is the phase modulation amplitude, and Ωmod is 



S-13 
 

the modulation angular frequency. The proportion between 𝑆(𝛺𝑚)  and 𝑆(𝛺𝑚𝑜𝑑)  is 

obtained by measuring the peak spectral power of the mechanical oscillation and that of 

phase modulation signals. RBW is the resolution bandwidth of the spectrum analyzer, and 

Γm/2π is the dissipation rate of the mechanical oscillator. For the chip used in this manuscript, 

the value of g0 is determined to be about 690 kHz. 

To further illustrate the effect of the coupling strength go on the chaos generation, we 

examine theoretically a varied coupling strength go between the OMO and photonic crystal 

cavity nonlinearities based on the numerical model. The coupling between resonators usually 

leads to the generation of complex nonlinear dynamics [38-40]. Supplementary Figure 6 

shows the simulated dynamical evolution under different go values. First, the system has pure 

OMO transmission signal for a small coupling strength go. Next, when go grows over a 

specific value (about 330
 
kHz), discrete frequency components can be observed at the 

locations of multiples of fomo/2 or fomo/4. It means the system has evolved into the fomo/2 or 

fomo/4 states. Along with the increase of go value, the OMO couples strongly with cavity 

nonlinearities. When g0 grows over a threshold value (about 670 kHz), the system shows 

complex evolution and finally transits into the chaos state. Thus, sufficiently strong go is a 

necessary condition for the chaos generation. In addition, it should be noted the threshold go 

value is dependent on the varied injection conditions, such as the injection power and 

detuning. A theoretical analysis has been addressed for the physical reasons of this deviation 

from eigenmode mechanical oscillations [41].  This is the reason why the chaos state only 

appears at specific ranges of injection detunings and powers as shown experimentally in 

Figure 4, Supplementary Figures 1 & 3.  
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Supplementary Figure 6. Investigation of dynamics evolution under different value of g0. 

Simulated 2D radio frequency (RF) spectral map with varied dynamics for different coupling 

strength g0 values, with the injection power fixed at Pin  = 1 mW and the normalized detuning 

at 10. The mechanical frequency Ωm/2π value is 110 MHz and the other parameters are given 

in Supplementary Table 1. The inset shows the fine evolution of the RF frequency around 110 

MHz, with the slight RF frequency shift from increased g0 and stronger optical gradient force.  

 

Supplementary Note 5: Effects of the laser-cavity detuning in chaotic transition and 

routes 

Supplementary Figure 7 illustrates the simulated 2D RF spectral map with dynamics 

evolution under different detunings δω/γi, with the injection power Pin at 1.26 mW. In the 

Supplementary Figure 7, the left regime is the OMO state in the range of δω/γi less than 3.5. 

The pure OMO signal is present at 112 MHz. Second, in the range of 3.5 < δω/γi < 8.5, the 

USP state appears. The identification of the USP state could be carried out by combining the 

spectral feature and the temporal characteristics together. The spectral distribution of the USP 

state is continuous, but the temporal waveform of the USP state is irregular pulsing, as shown 

in Supplementary Figure 1b. Furthermore, complex high-order harmonics are also 

interspersed among the USP region. Third, the fomo/3 state appears in a small window at δω/γi 

≈ 8.5. In addition, the fomo/2 state appears in the range of δω/γi ≈ 10. Significant fomo/2 

components appear in the RF spectra but have associated relatively weak fomo/4 components. 

Next, the system evolves into the chaos state in the range δω/γi ≈ 11. As shown by the RF 
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spectra, the chaos evolution is dominated by both the OMO and the SOM together, indicating 

the chaos comes from the coupling between the OMO and SOM oscillation. Finally, for δω/γi 

greater than 12, the SOM state becomes the dominant dynamics while the OMO oscillation 

disappears. Overall, the above numerical results predict a dynamical transition to chaos of 

OMO - USP - fomo/3 - fomo/2 - chaos - SOM as a function of detuning. This modeled dynamics 

evolution is in qualitative agreement with the experimental observations in Figure 1d.  

 

 

Supplementary Figure 7. The dynamics evolution under different detunings. Simulated 2D 

radio frequency (RF) spectral map with various dynamics under normalized laser-cavity 

detunings from 0 to 20, with the injection power Pin = 1.26 mW and optomechanical coupling 

strength g0 = 690 kHz. The other parameters are shown in Supplementary Table 1.  

 

Supplementary Note 6: Co-located two-photon-induced Drude free-carrier plasma and 

optomechanical dynamics 

To investigate the coupling between the OMO and silicon nonlinearities, we separate 

artificially the OMO and silicon nonlinearities [8, 28-30, 36, 42] in our numerical simulations, 

and then recombine them together again. First, we get a simplified OM oscillator by setting 

all photonic crystal cavity nonlinear coefficients to zero, as ГTPA = 0, ГFCA = 0, Гphc = 0, 

dnSi/dT = 0 and dnSi/dN = 0, respectively. Supplementary Figure 8a shows the corresponding 

OMO evolution under different injection powers and the normalized detuning fixed at 10. It 

shows that no complex nonlinear dynamics are observed, and the pure OMO is present at the 

intrinsic 110 MHz frequency and with a monotonic increase in RF power with increasing 
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injection power. Second, by setting go at 0 (without OMO), we numerically obtain a purely 

photonic crystal cavity regenerative modulation. Supplementary Figure 8b shows the cavity 

dynamical evolution under different injection powers. It can be seen that there is no 

observable self-induced optical modulation (SOM) [7, 8] in the relatively low Pin condition 

for Pin < 1.56 mW. For Pin larger than 1.56 mW, the SOM and its harmonics emerge at the 

frequency 66 MHz and 132 MHz, and gradually decrease along with the increase of Pin due 

to the larger thermal effects and longer relaxation time to the periodic origin state. It should 

be noted that the 66 MHz SOM is comparable with the half of OMO frequency fomo/2 at 55 

MHz, supporting the occurrence of the fomo/2 state.  

Third, Supplementary Figure 8c shows the dynamical evolution of the optomechanical 

cavity system when combining the OMO and the photonic crystal Drude electron-hole 

plasma nonlinearities together. The chaos state is present at the broad area of the medium Pin 

condition (labelled region II for 1.56 < Pin < 2.18 mW), originating from the large coupling 

between OMO and SOM. For higher Pin condition (labelled region III for Pin > 2.18 mW), 

discrete frequency components are present at multiples of fomo/2, demonstrating the fomo/2 

state. Generally, in a system that has two intrinsic frequencies, harmonic frequency locking 

will occur when the frequency ratio is close to a rational value [43, 44]. For example, in our 

PhC-OM chip, the frequency SOM is about 60 MHz for Pin > 2.18 mW, reasonably close to 

the fomo/2. Consequently, the 1/2-harmonic locking occurs, and discrete frequency with 

integer multiple fomo/2 is present in the theoretical simulations (labelled region III in 

Supplementary Figure 8c] and experimental observations (shown in Supplementary Figure 

3c). Since the SOM frequency varies with the change of driving conditions, other orders of 

frequency locking and different OMO sub-harmonic states can also be observed 

experimentally [Supplementary Figure 1 & 3] and theoretically [Supplementary Figure 5, 7 & 

8c].  
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Supplementary Figure 8. Investigations of the coupling between OMO and plasma. (a), 

Modelled optomechanical oscillation (OMO) evolution under varying injection powers Pin 

without any photonic crystal cavity nonlinearities. (b), Modelled cavity evolution under 

varying injection powers Pin with cavity nonlinearity but without optomechanical mechanism 

by setting g0 to 0. (c), Dynamical evolution of the recombined optomechanical photonic 

crystal cavity system under varying injection powers Pin, with g0= 690 kHz and the cavity 

nonlinearity values shown in Supplementary Table 1. The three dynamical regions are 

labelled ‘I’ (for Pin < 1.56 mW), ‘II’ (for 1.56 < Pin < 2.18 mW) and ‘III’ (for Pin > 2.18 mW), 

respectively.  
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Supplementary Note 7: Effects of the intracavity energy and drive power 

Supplementary Figure 9a further illustrates the evolution curves of the OMO frequency 

and the two-photon-induced SOM frequency under different injection powers. Combining the 

dynamical evolution presented in Supplementary Figure 8c, there are three dynamical regions: 

I labels the bifurcation transition routes from pure OMO to fomo/2, fomo/4, then into the chaos 

region; II labels the chaos region; and III labels the fomo/2 region. Firstly, in region II, the 

OMO couples strongly with SOM. The oscillation rhythm is disrupted and leads to the 

intricate chaotic states. In region III, the SOM frequency decreases to close to half of the 

OMO frequency. Meanwhile, the OMO becomes much stronger than that of region I and of 

region II according to the Supplementary Figure 8a. Then, frequency locking happens 

between OMO and SOM, and fomo/2 is formed. Third, in the region I, there is no apparent 

SOM as illustrated in Supplementary Figure 8b. But in Supplementary Figure 8c, the system 

is unstable with a series of bifurcations and evolves gradually into the chaos state. As seen in 

Supplementary Figure 9b & 9c, one could find that the Pin already stimulates considerable N 

and ΔT in the region I in optomechanical photonic crystal cavity when the intracavity mode 

energy |A|
2
 is relatively low as shown in Supplementary Figure 9d. These N and ΔT increase 

constantly along with the increase of Pin, also significantly destabilizing the OMO, and then 

leads to the bifurcation of the fomo/2 state, fomo/4 state, and even the chaos state. The above 

results illustrate that the large coupling between OMO and photonic crystal nonlinearities is 

key for the chaos generation.  
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Supplementary Figure 9. Evolution of the OMO, SOM and the PhC nonlinearities. (a), 

Evolution of OMO frequency fomo (blue line) and SOM frequency fSOM (green line) and fomo/2 

(purple dot line) and 2nd harmonics of fSOM (red dot line) under varying injection powers Pin. 

(b) Corresponding evolution of intracavity free carrier density N. (c) Evolution of intracavity 

temperature variation ΔT. (d) Evolution of the amplification of the intracavity mode energy 

|A|
2
. The three regions are labelled as ‘I’ (for Pin < 1.56 mW), ‘II’ (for 1.56 < Pin < 2.18 mW) 

and ‘III’ (for Pin > 2.18 mW), respectively. 
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