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ABSTRACT: We demonstrate a new optomechanical device
system which allows highly efficient transduction of femtogram
nanobeam resonators. Doubly clamped nanomechanical
resonators with mass as small as 25 fg are embedded in a
high-finesse two-dimensional photonic crystal nanocavity.
Optical transduction of the fundamental flexural mode around
1 GHz was performed at room temperature and ambient
conditions, with an observed displacement sensitivity of 0.94
fm/Hz1/2. Comparison of measurements from symmetric and
asymmetric double-beam devices reveals hybridization of the
mechanical modes where the structural symmetry is shown to be the key to obtain a high mechanical quality factor. Our novel
configuration opens the way for a new category of “NEMS-in-cavity” devices based on optomechanical interaction at the
nanoscale.
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Flexural nanomechanical resonators have consistently set
records for sensitive measurements of mass, force, and

displacement.1−9 These resonators with an ultrasmall mass are
of particular interest because they inherently operate at the
ultrahigh frequency of the fundamental mechanical mode,
which is advantageous for developing high-speed sensors with
ultimate sensitivity. At the same time, achieving a high
mechanical quality (Q) factor, particularly in ambient setting,
is equally important because the transducer sensitivity and the
coherence time of the mechanical vibration are proportional to
the Q factor. On the other hand, although recent developments
in one-dimensional (1D) photonic crystals (PhC) have enabled
optomechanical transduction at high frequencies,10,11 the
resonating mode is often postselected among many acoustic
modes simultaneously supported in an optimized photonic
structure. The coupling between a single optical cavity mode
and commonly utilized flexural mechanical vibrational modes
thus still remains challenging. Additionally, the demonstrated
high-frequency modes are based on high stiffness rather than
small motional mass. Furthermore, the poor heat dissipation of
the 1D PhC limits the highest operating power of the
cavity.12,13 Therefore, an optomechanical system with a well-
defined, ultrasmall-mass, high-Q mechanical resonator that
overlaps strongly with a high-Q optical cavity with large power
handling capability is highly desirable for extremely sensitive
measurements involving mass, force, and displacement. Here
we implement the first realization of the idea of a “NEMS-in-
cavity” by embedding a femtogram doubly clamped nano-

mechanical double-beam resonator in a finely tuned two-
dimensional (2D) PhC nanocavity. Conceptually, this “nano-
beam-in-cavity” configuration is analogous to the cavity
quantum electrodynamics (cQED) system realized by embed-
ding a single emitter (e.g., an atom, molecule, or quantum dot)
in a high-Q optical cavity. Here, we carve out a nanomechanical
resonator with well-defined vibration modes (in place of the
emitter of cQED) within a high-Q photonic nanocavity.
The simplest approach for realizing a “NEMS-in-cavity”

would be directly enclosing a tiny nanomechanical resonator
within a well-established PhC nanocavity such as the L3
cavity.14 However, due to the strong perturbation to the cavity
mode by the embedded nanobeams, the PhC nanocavity needs
to be thoroughly redesigned and engineered to ensure
maximum confinement of the cavity mode. Careful optimiza-
tion results in a single optical mode with a high intrinsic optical
Q of 19 500. Enabled by the well-defined geometry and
femtogram mass of the mechanical resonator, optical trans-
duction of the nanobeam’s single fundamental mechanical
flexural mode around 1 GHz is demonstrated, with a
mechanical Q of 1230 in vacuum and 580 in air. Further
investigation on symmetric and asymmetric double-beam
devices reveals hybridization of the mechanical modes and
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shows that the perfect symmetry of the double beams is crucial
for obtaining a high mechanical Q.
Beyond demonstrating sub-fm/Hz1/2 sensitivity at the near

GHz frequency, our “NEMS-in-cavity” approach has several
additional advantages. First, not only is the optical modal
volume minimized but also the mechanical mode volume is
reduced well below λ0

3 , where λ0 is the free-space wavelength of
the optical mode. In our devices, the effective volume of the
mechanical mode is about 10% of that of the optical cavity
mode, yielding large optomechanical coupling rates. Further-
more, by using well-studied doubly clamped beams, engineering
nanomechanical resonators with different geometry parameters
is straightforward and largely independent from the optical
cavity design, thus allowing for the wide use in various precision
sensing and metrology applications. Also, the use of 2D PhC as
the platform, as opposed to 1D PhC nanocavities,10,11,15,16

facilitates the heat dissipation and thus remarkably improves
the power handling capability of the devices. Finally, by using a
CMOS-compatible fabrication process, our optomechanical
structures are laid out along with integrated grating couplers
and waveguides on an all-integrated Si photonics platform.17

The integrated circuit approach provides an efficient framework
for characterizing such optomechanical devices because it
provides measurement stability and allows for the critical
coupling condition between the PhC waveguides and the PhC
nanocavity to be reliably achieved through design and
lithographic patterning. The vertical symmetry of this in-
plane coupling scheme also helps to suppress optomechanical
coupling of low-frequency PhC membrane modes.18 This work
lays the foundations for a new category of “NEMS-in-cavity”
devices based on optomechanical interaction at the nanoscale.

Various approaches to obtain high-Q two-dimensional Si
nanocavities could be followed, including neighbor-hole-shifted
three-lattice-point (L3) cavities,14 double-heterostructure cav-
ities,19 and width-modulated line-defect cavities.20,21 Here, a
variant of the L3 cavity is employed because this configuration
naturally fits in our “beam-in-cavity” concept for beams of
submicrometer length. As shown in Figure 1a,b, we create a
nanomechanical double-beam resonator inside a PhC L3 cavity.
This is done by placing three parallel slots, separated from each
other by the beam widthWbeam and with their lengths being the
beam length Lbeam, thus forming a “nanobeam-in-cavity”
optomechanical system. In principle, one could also use
single-beam configuration. However, a double-beam cavity is
more favorable due to its overall symmetry, which is important
to reduce radiation losses and achieve a high mechanical Q. To
demonstrate the beam’s fundamental flexural mode vibrating at
around 1 GHz (a frequency well in the UHF range and yet
measurable with our experimental setup), the beam length and
width are chosen to be Lbeam = 785 nm and Wbeam = 80 or 90
nm. The corresponding slot width is set to be Wslot = 60 or 53
nm, where the area occupied by the mechanical resonator is
kept the same to minimize the variation of the optical mode.
The effective mass is 25.6 or 27.8 fg for Wbeam = 80 or 90 nm,
respectively. Note that the nanobeams in our scheme can be
designed a priori and are mostly independent of the cavity,
which provides great freedom in engineering the appropriate
mechanical resonator for specific applications, in stark contrast
to previously demonstrated “cavity-in-beam” and “beam-cavity”
structures where the mechanical resonator cannot be clearly
defined, and its geometry and the associated cavity mode have
to be adjusted iteratively.10,11,22

Figure 1. (a) Scanning electron micrograph of the nanomechanical double-beam resonator in a PhC nanocavity. The color-coded holes around the
double beams are shifted (outward defined as positive shift). (b) Close-up view of the double beams. (c) PhC band diagram of a W1.35 waveguide
and a W1 waveguide, both with triple slots and formed in a 220 nm Si layer. The three 60 nm slots are separated by two 80 nm beams in between.
The continuum of PhC slab modes is indicated by the cyan areas. A single guided band of the W1.35 waveguide (violet solid line) is present at the
middle of the PhC bandgap, while the corresponding band of the W1 waveguide (violet dashed line) is buried in the upper continuum of the PhC
slab modes. (d) Simulated TE-like electric field component Ey of the resonant mode (λ0 = 1541.7 nm) of the optimized double beam in PhC
nanocavity. The profile indicates that the optical mode closely matches the mechanical mode volume. (e) Two-dimensional Fourier transform of the
electric field. The red circle at the center defines the leaky region, i.e., the inside of the light cone shown in (c). (f, g) Simulated mechanical mode of
the double beams, with differential (f) and common motion (g).
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The inclusion of a nanomechanical resonator induces a
strong perturbation to the original L3 cavity mode, and thus the
cavity had to be redesigned to recover the high-Q mode. The
creation of the three slots (by replacing the refractive index of
Si with that of the air) reduces the effective index of the cavity
and shifts the cavity band up into the slab mode continuum,
making the cavity mode a leaky mode with a low Q.23 To
counteract the effects of refractive index reduction, we
increased the width of the cavity row by a factor of 1.35 (i.e.,
a vertical hole-to-hole distance of 1.35√3a, where a is the PhC
lattice constant). This strategy pulls the cavity mode back into
the center of the bandgap where the mode confinement is
maximal, and this minimizes the in-plane optical loss. Figure 1c
shows the TE-like band diagram of such a W1.35 waveguide
(with a W1 waveguide as comparison) with the three
embedded slots (extended infinitely in the x direction), as
computed with MPB,24 a fully vectorial eigenmode solver of
Maxwell’s equations with periodic boundary conditions. The
lattice constant a = 430 nm, hole radius r = 0.279a = 120 nm,
thickness t = 220 nm, slot widthWslot = 60 nm, and beam width
Wbeam = 80 nm. At the middle of the bandgap sits a single band
of the W1.35 waveguide (violet solid line), with its mode
concentrated mostly inside the slots (see the inset of Figure
1c), which ensures good transverse modal confinement. By
comparison, the corresponding band of the W1 waveguide
(violet dash line) is buried in the upper continuum of the PhC
slab modes.
We then optimize the PhC nanocavity with slots of the

prescribed length Lbeam. To achieve good longitudinal modal
confinement, the holes to the sides of the slots in the cavity row
are enlarged accordingly to a radius of 160 nm, thus

maintaining the same filling ratio of the other part of the
PhC membrane. The cavity resonant wavelength λ0 and quality
factor Q were simulated with MEEP25 by a three-dimensional
finite-difference time-domain (FDTD) method. The highest
optical Q factor is obtained by adjusting the positions of ten
holes surrounding the cavity, with six holes in the cavity row
(three on each side) shifted in the x direction (outwardly by
Sx1, Sx2, and Sx3, respectively) and four in the cavity neighboring
rows (two in each row) shifted in the y direction (outwardly by
Sy) (see Figure 1a). With preset beam parametersWslot = 60 nm
and Wbeam = 80 nm, the highest cavity Q was found for a
structure with parameters Lbeam = 1.8a, Sx1 = −0.18a, Sx2 =
−0.06a, Sx3 = 0.22a, and Sy = −0.15a. This mode has a resonant
wavelength λ0 = 1541.7 nm, a theoretical quality factor Q =
19 500, and an effective modal volume V0 = 0.022(λ0)

3. The
geometry used in the simulation does not include the effects
from fabrication imperfections. The electric field component Ey
is shown in Figure 1d, and its two-dimensional Fourier
transform (Figure 1e) shows negligible components in the
leaky region, indicative of a high-Q mode.
Next, to accurately simulate the mechanical modes, the above

structure was imported into COMSOL,26 an eigenmode solver
based on three-dimensional finite-element method (FEM).
Their mechanical frequency ( fm = Ωm/2π) and modal
displacement profile U(x,y,z) were directly obtained from the
FEM simulation. The effective mass is calculated with the
definition meff = ∫ dV ρ|U|2/max(|U|2), where ρ is the density of
the material. The optomechanical coupling strength gom,
defined as dωc/du (ωc is the cavity mode frequency and u
denotes the displacement of the mechanical mode), can be
determined by the optical cavity field and the mechanical

Figure 2. (a) Experimental setup: TDL, tunable diode laser; VOA, variable optical attenuator; FPC, fiber polarization controller; PD, photodetector;
DAC, data acquisition card; EDFA, erbium-doped fiber amplifier; ESA, electrical spectrum analyzer. (b) Normalized optical transmission spectrum,
showing a single optical resonance with a loaded optical Q of 10 000. (c) RF power spectrum of the light transmitted through an Lbeam = 785 nm,
Wbeam = 80 nm device, exhibiting optical transduction of a single mechanical mode in the entire measurement range. (d) Zoomed-in RF spectra of
the same device exhibiting mechanical Q values of 1230 in vacuum and 580 in air measured with 1.6 and 2.5 mW optical power in the feeding
waveguide, respectively. A detector-noise-limited displacement sensitivity of 0.94 fm/Hz1/2 is obtained for the measurement in air.
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displacement profile using a perturbation theory for opto-
mechanical systems.11,27 Two modes pertaining to the beam’s
fundamental mode were found, corresponding to the differ-
ential and common motions of the double beams. The
differential mode (Figure 1f) with frequency Ωm/2π = 964.9
MHz and effective mass 25.6 fg has a strong optomechanical
coupling gom/2π = 10.8 GHz/nm. The common mode (Figure
1g) with frequency Ωm/2π = 976.0 MHz and effective mass
29.5 fg has a weak optomechanical coupling gom/2π = 0.31
GHz/nm.
The devices were fabricated from standard silicon-on-

insulator (SOI) substrates (Soitec UNIBOND), with a 220
nm Si layer on 3 μm buried oxide. The entire structure was
patterned by high-resolution electron-beam lithography (Vistec
EBPG 5000+) of a positive-tone resist. Then the pattern was
transferred by Cl2-based inductively coupled plasma reactive
ion etching (Oxford PlasmaLab System 100) to the Si device
layer. Finally, the PhC membrane was released from the
substrate by photolithography and subsequent wet etching in a
buffered oxide etchant. Figure 2a shows a typical device which
includes a pair of grating couplers for vertically coupling light
onto and out of the chip, strip waveguides for routing light into
PhC structure, and PhC waveguides for coupling light into and
out of the cavity. The PhC membrane terminates with a
termination parameter τ = 0 as defined in ref 28 to facilitate a
low-reflective interface between the strip waveguide and the
PhC waveguide. The positions of the ends of PhC waveguides

relative to the cavity were determined both numerically and
experimentally to ensure the maximal on-resonance trans-
mission of the cavity mode.29

First, we characterized the fabricated devices optically. As
shown in the experimental setup in Figure 2a, the device chip
was placed in a vacuum chamber, which was pumped below 0.1
mbar to minimize the gas damping effect. The light of a C-band
tunable diode laser (Santec TSL-210) was attenuated, and its
polarization was adjusted before sent to the devices. The light
enters the chip via the first grating coupler and is routed toward
the cavity. Light passing through the cavity is collected into an
optical fiber via a second grating coupler. This transmitted
signal was split by a 99/1 fiber coupler. 1% of the split light was
used for monitoring the transmission level and recording the
transmission spectrum with a kHz photodetector (New Focus
model 2011). The remaining 99% of the split light was sent
through a fiber preamplifier (Pritel FA-20) before reaching a
GHz photodetector (New Focus model 1611). The detected
signal was then sent to an electrical spectrum analyzer
(Hewlett-Packard 4396A) to measure the radio frequency
(RF) power spectral density containing the mechanical signal.
Depending on the specific parameters of PhC lattice and

beam structures, the fabricated devices have a single optical
resonance between 1520 and 1570 nm. Figure 2b shows a
typical transmission spectrum of a device displaying a single
optical resonance at 1548.49 nm. A Lorentzian fit of its narrow-
band spectrum reveals a loaded optical Q factor of 10 000,

Figure 3. (a) RF power spectrum of a symmetric-design Wbeam = 80 nm device showing a single high-Q peak at 903.6 MHz. (b) RF power spectrum
of a symmetric-design Wbeam = 90 nm device showing a single high-Q peak at 1.081 GHz. (c) RF power spectrum of an asymmetric-design Wbeam =
77 nm/83 nm device showing double low-Q peaks. (d) RF power spectrum of an asymmetric-design Wbeam = 87 nm/93 nm device showing double
low-Q peaks. All the devices have a beam length Lbeam of 785 nm.
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leading to a similarly high finesse for this low-order cavity
mode. The good agreement between simulated and measured
resonant wavelength and optical Q factor indicates our mature
control of device fabrication. The normalized on-resonance
transmission is 1.23 × 10−3. Taking into account a 16 dB
coupling loss typically introduced by the pair of grating
couplers, the insertion loss between the input and output strip
waveguide is estimated to be 13 dB, which consists of the
modal mismatch loss at the joints of strip waveguide to PhC
waveguide, the propagation loss inside the PhC waveguides,
and the tunneling loss between the ends of PhC waveguide and
the cavity.
We measured the double beam’s mechanical modes by

setting the laser wavelength at the maximum slope of the
optical resonance and recording the noise spectrum of the
optical transmission. The nanobeam’s thermal vibration causes
phase variations of the optical cavity mode, which induces a
resonance shift at the frequencies of the mechanical modes and
results in an intensity modulation at a wavelength near the
(fast-shifting) resonance. Therefore, the noise spectrum of the
optical transmission contains the signature of the nanobeam’s
vibrational modes.30 Figure 2c,d shows the RF spectrum of the
mechanical mode of a Wbeam = 80 nm device. In the entire
spectrum, a single mechanical mode at 903.6 MHz is observed,
which is considered to be the differential mode because of its
dominantly stronger optomechanical coupling to the optical
cavity mode. The common mode is not observed due to its
weak coupling (i.e., small gom) to the optical mode and also its
higher mechanical damping compared to the differential mode,
as will be discussed later. The measured mechanical Q values
are 1230 in vacuum and 580 in air. These Q factors are
comparable with those from other nanomechanical resonators
with similar dimensions.10,31 Among various designs, the
highest measured frequency is from a Wbeam = 90 nm device,
also exhibiting a single mechanical mode, at frequency 1.081
GHz (Figure 3b). All measurements were performed at low
laser intensity to ensure that optomechanical amplification or
damping from dynamic back-action is negligible. This is
confirmed by the same mechanical Q values for blue and red
detuning of the laser from the optical resonance.30

The displacement noise power spectral density (PSD) of the
thermomechanical motion not only gives the resonant
frequency and Q factor but also provides a reliable way to
calibrate the sensitivity of the measurement system. In the
experiment, the relation between the displacement and the
photodetector voltage is a priori unknown. However, the area
under the peak in the RF PSD corresponds to the Brownian
motion of the resonator and thus provides a way to calibrate
this transduction factor. Focusing on the Wbeam = 80 nm device
of Figure 2d, its calculated effective mass (25.6 fg) and
measured frequency (903.6 MHz) yield an elastic constant k =
825 N/m. This corresponds to a root-mean-square displace-
ment amplitude of urms = (kBT/k)

1/2 ≈ 2.24 pm at room
temperature T = 300 K. The displacement sensitivity is set by
the noise floor of the RF spectrum, and it depends on the laser
power and the transmission responsivity (slope of the
transmission vs wavelength). In Figure 2d, for the measurement
in air with 2.5 mW optical power in the feeding waveguide, a
displacement sensitivity of 0.94 fm/Hz1/2 is achieved, which is a
factor of 77 above the standard quantum limit. This value is
among the highest that have been demonstrated around GHz
frequencies and is at the same order of magnitude of other
sensitive nano-optomechanical systems at much lower

frequencies.7−9,32 Comparison with the measurement in
vacuum shows a higher input power indeed helps in achieving
a better displacement sensitivity. Note that the input optical
power of 2.5 mW in the feeding waveguide represents at least
an order of magnitude improvement of the power handling
capability of our device compared to that demonstrated in 1D
PhC.10

The measured mechanical Q of ten devices with the above
symmetric-design double beams has a broad distribution
varying from 610 to 1230 (see, e.g., Figure 3a,b). In order to
explain this behavior, we employ a model based on two coupled
mechanical oscillators with effective masses m1, m2 and elastic
constants k1, k2, corresponding to the two individual nano-
mechanical beams of our system. The equations of motion for
this coupled oscillator system are33

̈ + γ ̇ + γ ̇ + ̇ + + −

=

m u m u m u m u k u k u u

F

( ) ( )1 1 1 a 1 c 1 1 2 2 1 1 c 1 2

1 (1)

̈ + γ ̇ + γ ̇ + ̇ + + −

=

m u m u m u m u k u k u u

F

( ) ( )2 2 2 a 2 c 1 1 2 2 2 2 c 2 1

2 (2)

In the preceding equations, γa denotes the coupling-
independent dissipation, such as material loss, air damping,
and the coupling-independent portion of clamping loss. kc is
the coupling coefficient of the two oscillators. F1 and F2 are the
thermal Langevin forces acting on the oscillators. The γc terms
denote the difference in clamping loss for the collective motion
of the coupled oscillator system. Its origin can be understood as
follows: motion of the individual beams creates a stress profile
in the surrounding PhC membrane, which is different for the
in-phase and antiphase collective motion of the coupled system.
This implies that the dissipation channel due to emitting
phonons into the substrate is different in the two cases.34

The eigenmodes of the coupled eqs 1 and 2 are solved to
obtain the modal frequency and modal damping rate. Because
of the dissipative (γc) and dispersive (kc) coupling, the original
individual modes are hybridized, forming an in-phase (uIP) and
an antiphase (uAP) coupled mode (details provided in the
Supporting Information). In the case that two nonidentical but
similar oscillators are coupled with a small asymmetry
parameter δ defined by (Ω1 − Ω2)/2 where Ω1,2 = [(k1,2 +
kc)/m1,2]

1/2 is the angular frequency of the individual beam, the
relative weights of the individual modes are almost equal, thus
producing an in-phase common mode uIP ≈ (u1 + u2)/2 with
damping rate γa + 2γc[1 − δ2/(γc

2 + νc
2)] and an antiphase

differential mode uAP ≈ (u1 − u2)/2 with damping rate γa +
2γcδ

2/(γc
2 + νc

2), where νc is a frequency parameter defined by
2kc/[(Ω1 + Ω2)(m1m2)

1/2] which characterizes the dispersive
coupling between the two oscillators. When the two oscillators
are identical, i.e., δ = 0, the common mode has its highest
damping rate γa + 2γc and the differential mode has its lowest
damping rate γa. On the other hand, if the two oscillators are
quite different from each other, the coupled modes reduce to
the individual uncoupled modes, i.e., uIP ≈ u1 and uAP ≈ u2.
Their modal frequencies almost maintain the original
uncoupled values, and their damping rates are almost equal,
given by γa + γc.
With this model, it becomes clear that the only mode

observed in the symmetric-design double-beam devices is the
differential mode, which compared with the common mode not
only has a higher optomechanical coupling gom but also has a

Nano Letters Letter

dx.doi.org/10.1021/nl300142t | Nano Lett. 2012, 12, 2299−23052303



lower damping rate (or, equivalently, higher mechanical Q).
The broad distribution of the measured Q values can be
attributed to the asymmetry (δ ≠ 0) of the double beams,
which is introduced by the small and uncontrollable fabrication
imperfections. When γa is much less than γc, the damping rate
of the differential mode is dominated by the γc term, which is
directly proportional to δ2. Therefore, the distribution of such
asymmetry (δ) is translated into the measured Q values of the
symmetric-design devices, varying from 1230 to 610 (Figure
3a,b).
The origin of different damping rates for the differential and

common modes lies in their inherent motional behavior. As
explained above, the damping rates are closely related to the
radiating elastic strain field. The FEM simulation (in the
Supporting Information) indicates that the common mode
vibration acts as a dipole source and induces a transverse wave
in the PhC membrane radiating away from the oscillator.
However, due to the prohibited dipole radiation by the
destructive interference, the differential mode acts as a
quadruple source and induces a longitudinal wave radiating
away from the oscillator, thus experiencing much less
mechanical dissipation because of the much weaker radiation
field.
In order to estimate the relative strength of different damping

mechanisms, we also fabricated asymmetric-design double-
beam devices in which the center slot is shifted 3 nm
transversely, causing a 6 nm difference between the widths of
the double beams. As confirmed both numerically and
experimentally, this shift does not cause any observable
variation in the optical Q from that of the symmetric-design
double-beam devices. According to the beam theory35 and
numerical simulation, this beam width difference results in a
frequency difference 2|δ| ≈ 70 MHz for Wbeam = 80 nm devices.
This asymmetry brings the coupled oscillator system into the
weakly coupled regime, and thus the two eigenmodes will have
their modal frequencies close to the individual uncoupled
values, with approximately equal damping rates γa + γc.
Additionally, such an asymmetry also results in approximately
equal optomechanical coupling for both eigenmodes (gom/2π ≈
5.5 GHz/nm, i.e., half of the sum of the coupling rates of the
common and differential motion). The RF spectra of such
intentionally asymmetric devices are displayed for a Wbeam = 77
nm/83 nm device (Figure 3c) and for a Wbeam = 87 nm/93 nm
device (Figure 3d), where the modes possess their mechanical
Q’s of around 55. Assuming the highest Q ever achieved from
the symmetric-design devices is from one having a perfect
symmetry (δ = 0), it is thus straightforward to establish a
relation between the experimental Q and the damping rates

γ
γ + γ

= =
Q

Q
55

1230
a

a c

asym

sym (3)

which leads to a ratio of 21.4 between the two damping rates γc
and γa. This experimentally determined ratio of γc/γa confirms
in turn that the mechanical Q of such double-beam devices is
actually limited by the γc term, the clamping loss due to the
collective motion of the double beams, and that the perfect
symmetry of the double beams is the key to achieve a high Q of
a single mechanical mode, i.e., the differential mode.
In summary, we have demonstrated for the first time a

“nanobeam-in-cavity” optomechanical system on a Si integrated
photonics platform, which consists of a femtogram doubly
clamped nanomechanical resonator embedded in an engineered

high-Q two-dimensional photonic crystal nanocavity. By using
the well-studied doubly clamped beams as the nanomechanical
resonator, the mechanical design is easy and independent from
the optical cavity design, thus allowing for versatile geometries
of the mechanical resonator for various applications. Since a
flexural beam oscillator with length L, width W, and thickness t
has its mass m ∝ LW and elastic constant k ∝ W3/L3 when the
vibration is along the width dimension, combinations of L and
W can lead to a wide range of m and k. For example, in weak
force measurement such as magnetic resonance force
microscopy36 where beams with very low elastic constant are
required, we may design the beams to have small width or long
length or even use a single-clamp geometry. Another example
lies in the mass sensing application where a small mass is
desirable because the smallest resolvable mass is Δm = 2meff

(Δfm/fm) for a given frequency resolution Δfm. Another bonus
of reducing the resonator mass would be an enhanced optical Q
(after optimization), resulting from a less perturbed cavity.
Actually structures with 60 nm beams achieve a theoretical
optical Q above 50 000 from our numerical simulation, an
enhancement by a factor of 2.5 over the current generation of
80 nm beams. This optical Q enhancement would lead to
higher measurement sensitivity because of the stronger signal
readout. The analysis from the results of symmetric and
asymmetric double-beam devices reveals hybridization of the
mechanical modes and shows that the perfect symmetry of the
double beams is the key to obtain a high mechanical Q. Future
work will be aimed at further enhancing the optical and
mechanical Q values to make such devices highly useful in
cavity quantum optomechanics.
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