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Abstract. Laser frequency microcombs provide a series of equidistant, coherent frequency markers across
a broad spectrum, enabling advancements in laser spectroscopy, dense optical communications, precision
distance metrology, and astronomy. Here, we design and fabricate silicon nitride, dispersion-managed
microresonators that effectively suppress avoided-mode crossings and achieve close-to-zero averaged
dispersion. Both the stochastic noise and mode-locking dynamics of the resonator are numerically and
experimentally investigated. First, we experimentally demonstrate thermally stabilized microcomb formation
in the microresonator across different mode-locked states, showing negligible center frequency shifts and a
broad frequency bandwidth. Next, we characterize the femtosecond timing jitter of the microcombs, supported
by precise metrology of the timing phase and relative intensity noise. For the single-soliton state, we report a
relative intensity noise of —153.2 dB/Hz, close to the shot-noise limit, and a quantum-noise-limited timing jitter
power spectral density of 0.4 as?/Hz at a 100 kHz offset frequency, measured using a self-heterodyne linear
interferometer. In addition, we achieve an integrated timing jitter of 1.7 fs + 0.07 fs, measured from 10 kHz to
1 MHz. Measuring and understanding these fundamental noise parameters in high clock rate frequency
microcombs is critical for advancing soliton physics and enabling new applications in precision metrology.
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1 Introduction

Laser frequency combs have impacted science and technology
fields with their equidistant frequency spacings, serving as
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unique coherent clockwork.'? Recent emerging applications in-
clude, for example, clocks for space-borne networks,™* precise
laser ranging metrology for autonomous platforms,” and low-
phase noise radio frequency generation,”’ all aided by low
timing jitter mode-locked frequency combs. The observations
of dissipative soliton microcombs in single microresonators®’
or coupled microresonators'® with smooth spectral profiles and
dispersive waves'' offer opportunities to examine soliton comb
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dynamics in miniature platforms. There has been significant
progress in soliton microcomb formation in different integrated
microresonator platforms such as Si;N,,'? AIN,"” LiNbO3,"* and
AlGaAs," benefiting from either ultrahigh quality factors or large
nonlinear coefficients. The recent demonstrations of electrically
pumped turn-key soliton microcombs'®"® and mode-locked
microcombs'? further reinforce the viability of the fully integrated
frequency microcomb and pave the way for integrated function-
alities such as terabit-per-second coherent transceivers,” > par-
allel coherent LiDAR,* astrophysical spectrographs,** laser
spectroscopy,”®® distance ranging,”' low-noise microwave
generation,” and convolutional processing networks.**

In soliton microcombs, the pump-resonance detuning noise*’
plays a critical role in the pump-to-repetition—rate noise
transduction.®*® A low repetition-rate phase noise (repetition-
rate timing jitter) regime exists at a detuning where the soliton
center frequency shift from dispersive-wave emission is bal-
anced by nonlinear effects. The phase noise can be improved
by injecting the locked pump laser into resonant cavities,"
by pumping the microresonators with a narrow linewidth laser,"
by optimizing high-order dispersion of the microresonators,*
and by thermal stabilization with an auxiliary laser.”® Quantum
motion of the microresonators has also been observed recently
through timing jitter characterization in counterpropagating
soliton pairs after suppressing common-mode technical noise.*
With close-to-zero net group velocity dispersion (GVD),
dispersion-managed soliton microcombs have been theoreti-
cally and experimentally investigated in active resonators featur-
ing shorter pulse widths as well as better timing stability.*™*
Therefore, the precise characterization of timing jitter in various
microcombs is highly demanded. Direct photon detection can
characterize timing jitter when repetition rates are detectable,
but it has a limited timing jitter power spectral density (PSD)
noise floor of 1 x 1076 fs?/Hz at 1 MHz offset frequency.'
It is sensitive to intensity-noise-to-phase-noise (IM-PM)
conversion.” Linear fiber interferometry®*** could provide a
lower timing jitter PSD noise floor of 1 x 10~ fs?>/Hz, which
is free of the IM-PM conversion and shot-noise limit.

Here, we demonstrated a series of thermally intracavity
power-stabilized microcombs at different mode-locked states
in 89 GHz dispersion-managed Si;N, microresonators with
negligible center frequency shifts and a broad frequency band-
width. The demonstrated dispersion-managed (DM) micro-
combs not only expand the scope of soliton dynamics®*'" but
also enable low-jitter soliton trains. The DM microcombs sup-
pressed occurrences of avoided-mode crossings (AMX),*™!
compared with constant-dispersion microcombs, allowing lower
timing jitter PSDs. Subsequently, we determine the intensity and
timing fluctuations of the soliton microcombs at the single-
soliton, multiple-soliton, and soliton crystal® states. As micro-
comb oscillators have high repetition rates, low pulse energy,
and high pulse background, we present a linear interferometry
approach with tens of zeptosecond/Hz'/? timing jitter resolu-
tion to characterize its jitter. We note that the approach in
Refs. 34 and 48 is reference-free and independent of the repeti-
tion rate, expanding from prior silica microcomb® and fiber
comb studies®® to the 89 GHz pulse train timing jitter measure-
ments of the silicon nitride DM microcombs. The measurement
of the fundamental timing jitter is based on (1) time delay for the
frequency discrimination and (2) optical carrier interference for
optical phase discrimination. We observe a relative intensity
noise (RIN) of —153.2 dB/Hz at 100 kHz offset, with a
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corresponding integrated RIN of 0.034% from 100 Hz to
10 MHz for the single-soliton microcomb. For the single-soliton
microcomb, the quantum-noise—limited timing jitter PSD is de-
termined as 0.4 as?/Hz for 100 kHz offset, with an integrated
jitter of 1.7 fs + 0.07 fs from 10 kHz to 1 MHz. The integrated
timing jitter from 10 kHz to 44.5 GHz Nyquist is ~32.3 fs.

2 Methods

2.1 Dispersion-Managed Microresonator Fabrication

The fabrication procedure of the microresonator starts with a
3 pym thick SiO, layer that is first deposited via plasma-
enhanced chemical vapor deposition (PECVD) on a p-type 8"
silicon wafer to serve as the undercladding oxide. An 800 nm
silicon nitride is subsequently deposited via low-pressure
chemical vapor deposition (LPCVD), and the resulting nitride
layer is patterned by optimized 248 nm deep-ultraviolet lithog-
raphy and etched down to the buried oxide cladding via an opti-
mized reactive ion etch. The nitride microresonators are then
overcladded with a 3 um thick oxide layer, deposited initially
with LPCVD for 0.5 um and then with PECVD for 2.5 um.

2.2 Dispersion-Managed Microcomb Formation
Numerical Simulation and Stochastic Noise
Calculation

After taking anomalous GVD and AMX into consideration, we
have implemented the Ikeda method to obtain the roundtrip-
varying nonmean-field microcomb dynamics and noise charac-
ter written as

Em+l (0,1‘) =V TcEin+ V 1_Tce_i(wn_w”)lREn1<Lcav7t)
Lefet) o 84202 | B, (2.0) + iy (2)En(z.0) 1 FIR(Y)
< Fl[En(z)Pl},

Z

where 1y is the roundtrip time, z is the propagation distance
within each cavity round trip, ¢ is the fast time, E,(z,1) is
the intracavity electric field of the m’th roundtrip, the Fourier
transform correspondence on the fast time is E,,(z, ®), E;, is
the external pump field, « is the propagation loss, T is the cou-
pling strength, L.,, is the cavity length, § = (@) — @, )t is the
pump-resonance detuning phase, and f3,(z) is the second-order
dispersion coefficient varying over the roundtrip position. Here,
B»(z) is chosen from Fig. 1(b) ensuring the averaged f, is
—4.3 fs/mm, based on our experimental characterization.
7(z) is the Kerr nonlinear coefficient varying over the roundtrip
position. R(¢) is the nonlinear response function, including the
Raman response function. To incorporate the avoided-mode
crossing-induced frequency shift, an additional frequency shift
A, is introduced to the n’th mode so that the mode frequency

becomes w, = wy + Dyn + 2 22"2 + A,. A, is determined by the
A, _

empirical two-parameter model 3 = %, where a is the
maximum mode frequency shift and » and b are the mode
number and mode number for the maximum mode frequency
shift, respectively. The thermal effect is not considered in the
simulation because of the dual-driven thermal balance and
the thermoelectric cooler (TEC) module. From the cavity-mode
dispersion characterization, the cavity-free spectral range
D, /2x = 88.52 GHz. Furthermore, we estimate the maximum
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frequency shift to be % = 130 MHz at 1581.5 nm determined
by the spectral peak in the soliton microcomb optical spectrum.
The estimated value is supported by comparing the simulated
comb spectrum with the experimental result, which is in good
qualitative agreement. A total of 2000 modes centered at the
pump are incorporated into the model. The simulation starts
with vacuum noise and runs for 1 x 10° roundtrips until the sol-
ution reaches a steady state.

To characterize the performance of the timing jitter, we in-
troduced the thermal noise €g, shot noise €, pumping laser’s
intensity noise €;,, and frequency noise €, into our modeling.
The dynamics can be represented as

Eerl(O7 t) = \/T_C(EinJrein) + me—i(mo—mp,em)m
Em (Lcavv t) + €

= [a - i%”w2 - ie@} E,(z, o)+ iy(2)E, (z.0)*
{FIR(?)] x FlIE(z, )]}

OE,,(z.0)
0z

All these noise sources are assumed proportional to the
normal distribution. The standard derivations of ¢;, and ¢,
are determined by the laser’s RIN PSD and frequency noise
PSD, respectively.”** To extend simulated Fourier frequency
range to kHz frequencies, we examine this for a total of 2
roundtrips.

2.3 Relative Intensity Noise and Self-Heterodyne Linear
Interferometry

The filtered microcomb after removing the pump laser is
measured by a photodetector (Thorlabs, Newton, New Jersey,
United States, PDA10CF) with an optical power of 210 yW.
A multimeter and an oscilloscope monitor the DC voltage (V).
A signal source analyzer (Keysight, Santa Rosa, California,
United States, E5052B) records the voltage fluctuation PSD
Sa7(f). A home-built diffractive grating pair is used to select
the comb lines for the timing jitter PSD measurement. We first
optimize the noise floor of the self-heterodyne linear inter-
ferometer (SHLI) by improving the signal-to-noise ratio of
the detected radio frequency (RF) signal at 100 MHz. Second,
we minimize the relative delay time between the two optical
comb lines (v, = 190.11 THz, v,, = 192.55 THz) and the
power difference of the two arms of SHLI to enable the suppres-
sion of the common-mode noise. Third, we optimize the delay
time for the soliton microcomb based on two criteria: the first is
to maximize the timing jitter measurement sensitivity, and the
second is to expand the measured Fourier offset frequency
range. The fiber delay length is optimized to be 49 m. The de-
tected RF powers at the output of the two photodetectors are
14 and 19 dBm.

3 Results

3.1 Chip-Scale Low Timing Jitter Dispersion-Managed
Silicon Nitride Microresonators

Figure 1(a) shows the schematic illustration of the DM soliton
microcomb formation in the tapered microresonator, which in-
cludes scanning electron microscope images of the stoichiomet-
ric silicon nitride microresonator with an outer radius of 261 ym
and a thickness of 800 nm. The nitride waveguide width is con-
tinuously changed from 1 to 4 um to finely tune group velocity
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dispersion and filter high-order transverse modes in the single-
mode microresonator.”> GVD varies along the microresonator
from —55 to 58 fs?/mm simulated with the finite-element
analysis method, as shown in Fig. I(b) after considering
both geometric and material dispersion. Figure 1(c) shows
the simulated GVD for various waveguide widths along with
the cavity path-averaged GVD calculated via the relation
Pr = [ P2(2)dL /Ly, Where f5(z) is the GVD for the micro-
resonator waveguide and L,y is the cavity circumference.

The fundamental transverse-electric mode features a small
anomalous path-averaged simulated GVD of —3.51 fs?/mm
at a pump wavelength of 1602 nm. The cavity GVD is exper-
imentally characterized by swept-wavelength interferometry
with only two AMX across the entire wavelength range for near
single-mode operation. The measured free spectral range and
GVD are ~89 GHz and —4.39 fs?/mm, respectively, as shown
in Fig. 1(d). These values deviate from the calculated dispersion
due to factors such as fabrication imperfections, material inho-
mogeneity, and limitations in the accuracy of our measurement
setup. The measured loaded and intrinsic quality factors are
1.8 x 10° and 3.4 x 109, respectively. Subsequently, we numeri-
cally examined the timing jitter PSD depending on different in-
trinsic cavity GVD, assuming no AMX, thermal, higher order
dispersion, and Raman effects, as shown in Fig. 1(e). As the
GVD decreases, the jitter PSD decreases. AMX will cause
higher timing jitter PSD and higher integrated jitter accordingly,
which will be proved in the numerical simulations, as shown in
Fig. 1(f). These results show that the low-jitter pulse train can be
realized by close-to-zero net dispersion and suppression of AMX.
Our dispersion-managed adiabatic rings are able to suppress the
occurrence of these avoided-mode crossings and obtain small
dispersion, and thus reduce the timing jitter.

3.2 Thermally Stabilized Dispersion-Managed
Microcomb Formation

DM microcombs are subsequently generated in the microreso-
nator. Figure 2(a) illustrates the optical spectrum of the single-
soliton DM microcomb overlapped with the numerically mod-
eled spectral profile. Modest spectral dips resulting from two
hybridized interpolarization-mode couplings at 1592.64 and
1659.72 nm are observed. The 1563.64 nm peak is the auxiliary
pump laser. The effect of the auxiliary pump diminishes once
the soliton state is reached. To maintain stability, thermal noise
needs to be actively controlled through feedback mechanisms.
To illustrate the temporal performance of the microcomb, we
measured the intensity autocorrelation trace with a noncollinear
second-harmonic autocorrelator after pump suppression with a
bandpass filter. Figure 2(b) shows the measured pulse width of
the single-soliton at ~305 fs for the filtered optical spectrum,
along with the ~11.2 ps pulse train. The modeled pulse width
is included in the inset of Fig. 2(d). We also observed double-
soliton and soliton crystal states in the microresonator. The cor-
responding measured optical spectra of the double-soliton and
one-defect soliton crystal are illustrated in Figs. 2(e) and 2(g)
overlapped by the modeled spectral profiles, respectively.
The soliton crystal optical spectrum indicates destructive inter-
ference between a single-soliton microcomb and a 12 free
spectral range (FSR) perfect soliton crystal microcomb. The
spatiotemporal modeled intracavity waveforms are depicted
in Figs. 2(f) and 2(h), where the soliton defect in the time do-
main is presented. The demonstrated microcombs offer broader
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dispersion-managed silicon nitride microresonator.

(a) Schematic illustration of DM soliton microcomb generation. Inset: scanning electron micro-
scope images of the microresonator, zoomed waveguides, and the coupling gap. Scale bar:
130 um. (b) Simulated GVD along the microresonator. (c) Simulated GVD of waveguides with
different widths at a fixed waveguide height and the cavity path-averaged GVD. (d) Measured
GVD via swept-wavelength interferometry showing g, = -4.39 fs?>/mm. (e) Modeled timing
jitter PSD and integrated jitter versus Fourier frequency for a constant-dispersion uniform-
width ring microcomb, with g, = —4.39, -30.73, and -122.92 fs?/mm, respectively, no Raman
and thermal effects assumed. (f) Modeled timing jitter PSD and integrated jitter versus Fourier
frequency for a constant-dispersion uniform-width ring microcomb with different mode crossing

levels.

optical spectra consistent with the simulated results over multi-
ple soliton types with near single-mode operation with only two
avoided-mode crossings and negligible center frequency shifts>
compared with prior studies.®"’

3.3 Relative Intensity Noise Measurement of
the Dispersion-Managed Microcombs

To obtain the DM microcombs reliably and deterministically,
Fig. 3(a) illustrates the implemented TE-TM dual-driven pump
approach (more details in the Supplementary Material, Sec. I).
The forward-propagating pump laser is amplified and polarized
into the transverse-electric (TE) polarization, whereas the
backward-propagating transverse-magnetic (TM) polarized
auxiliary laser thermally stabilizes the microresonator intracav-
ity total power. Through this approach, we generate the micro-
combs in a planar tapered dispersion-managed SizN, micro-
resonator at the effective red-detuned region of resonance v,
based on dynamic photothermal stabilization. The orthogonally
polarized auxiliary laser is blue-detuned from the resonant mode
Vu1s3 in the reverse direction to mitigate thermal transients
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during the microcomb transition from a high-noise chaotic state
to a low-noise mode-locked state and stabilize the pump-
resonance detuning thermally. The TM-polarized auxiliary laser
experiences normal GVD and avoids the initiation of parametric
oscillation while also stabilizing intracavity power via optimi-
zation of power and phase detuning.* To quantify the soliton
microcomb noise performance, we conduct intensity noise at
different soliton microcomb states prior to the respective timing
jitter measurements. Coherence of the soliton frequency micro-
comb is examined via the RF intensity noise spectra over a
microwave frequency span that is a few times the cold cavity
resonance linewidth.

To supplement the RF intensity noise measurements of the
soliton microcombs, measurement of the RIN is performed next.
A signal source analyzer records the intensity fluctuation PSD
of the soliton microcombs after suppressing the pump laser
(detailed in Sec. 2). The filtered optical spectrum is shown in
Fig. 3(b). The measured RIN PSD [Sgin(f)] of the 89 GHz
mode-locked microcombs, calculated by normalizing the mea-
sured intensity fluctuation PSD [S,y (f) in units of V2/Hz] by
the average detected intensity |V |, is shown in Figs. 3(c)-3(e)

May/Jun 2025 e Vol. 4(3)
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Fig. 2 Soliton microcomb formation in tapered dispersion-managed microresonators. (a), (c), and
(e) Measured optical spectra of the single-soliton, double-soliton, and one-defect soliton crystal
DM microcombs overlapped with the numerical model, showing negligible center frequency shifts
(detailed in the Supplementary Material). Insets are zoomed optical spectra. (b) Measured inten-
sity autocorrelation trace of the single-soliton DM microcomb. Inset: measured and modeled pulse
widths. (d) Modeled intracavity waveform of the double-soliton with a temporal separation of
0.54 x Tg. (f) Modeled intracavity waveform of the one-defect soliton crystal showing the modu-
lated background (potential well) with a period of 1/12x Tg.

corresponding to the single-soliton, double-soliton, and
one-defect soliton crystal microcombs. The black curves in
Figs. 3(c)-3(e) are the RIN PSD of the spatiotemporal chaotic
state” (corresponding optical spectra are illustrated in the
Supplementary Material, Sec. I, Fig. S1b2) and the pump laser,
indicating the upper and lower bounds of the soliton microcomb
RIN PSD. The soliton microcomb RIN PSD drops with a
30 dB/decade slope (1/f3) over the first offset frequency de-
cade, whereas the continuous-wave (CW) pump laser RIN PSD
falls with a 20 dB/decade slope (1/f2). The pump laser RIN
PSD is measured at a nonresonant wavelength after the micro-
resonator. The discrepancy between the two slopes is attributed
to environmental noise sources such as free-space-to-chip cou-
pling fluctuations. For the single-soliton state, the measured
RIN is —153.2 dB/Hz at 100 kHz offset with a corresponding
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integrated RIN of 0.034% when integrated from 100 Hz to
10 MHz with the relation RIN;, = [/ Sgin(f)df. where f,
and f, are the lower and upper offset frequency bounds, respec-
tively. The measured RIN of the double-soliton state and the
soliton crystal state are —149.8 and —148.6 dB/Hz, respec-
tively, for a 100 kHz offset. The corresponding integrated
RINs are 0.036% and 0.023% over the same integrated fre-
quency range. The inset of Fig. 3(c) shows the electrical noise
suppression to facilitate the observation of the dynamical inten-
sity noise of the microcombs by optimizing the incident power
of the photodetector from —7.16 to —4.33 dBm. The insets of
Figs. 3(d) and 3(e) show the noise degradation of the double-
soliton and soliton crystal microcombs, which results from the
conversion of phase fluctuations to intensity fluctuations in the
intracavity spectral interference process.

May/Jun 2025 e Vol. 4(3)
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Fig. 3 RIN measurements of the dispersion-managed microcombs. (a) Experimental setup of the
TE-TM dual-driven approach for the generation of thermally stabilized soliton microcomb and the
relative intensity noise measurement. LD, laser diode; EDFA, erbium-doped fiber amplifier; PBS,
polarization beam splitter; TE, transverse-electric; TM, transverse-magnetic; OBPF, optical band-
pass filter; PD, photodiode; OSO, oscilloscope; and SSA, signal source analyzer. (b) Filtered
optical spectrum of the single-soliton DM microcomb. (c), (d), and (e) RIN PSD and the corre-
sponding integrated RIN of the microcombs at different dynamical states along with the lower
bound set by the pump laser. The RIN PSD of the chaotic DM microcomb and the RIN PSD after
loading broadband amplified spontaneous emission (ASE) noise are also illustrated. Inset of
(c): Electrical noise optimization by adjusting the incident optical power of the PD to explore
the dynamic soliton intensity fluctuations at different states. Inset of (d): Noise degradation of
the double-soliton DM microcomb showing additional white high-frequency noise. Inset of (e):
Noise degradation of the soliton crystal DM microcomb showing dynamic high-frequency noise.

3.4 Self-Heterodyne Linear Interferometry for Soliton
Microcomb Femtosecond Jitter Metrology

We next examine the timing jitter via an SHLI. Figure 4(a)
illustrates the implemented SHLI architecture for precision
timing jitter metrology. The interferometer consists of a reference
arm and a time-delayed arm in which a fiber-coupled acousto-
optic modulator driven by an RF signal f,, allows heterodyne
detection of phase fluctuation power spectral density [PSD,
S, (dB rad’/Hz)]. A diffractive-grating—based narrowband filter
pair selects two microcomb lines at frequencies v, = n X fp +
fceo and v,, = m X fr + fcgo, as illustrated in the inset of
Fig. 4(a) separated by a (m —n) x fy frequency difference,

the selected lines is subsequently discriminated with the delay
time 7 by the relation A¢(f) = 2zAv(f)z. The optical phase
fluctuations A¢(f) are converted into optical intensity fluctua-
tions by linear optical interferometry. At the fiber interferometer
output, the two optical lines are demodulated by two photode-
tectors. The residual phase noise PSD originates from the fre-
quency difference (m — n) x f of the two selected comb lines,
proportional to the delay time 7. Then, a double-balanced mixer
is used to extract the timing jitter PSD and eliminate the
common-mode noise induced by the carrier-envelope offset
signal and the driven microwave frequency signal (f,,). The
frequency fluctuations of the two selected optical comb lines
are converted into voltage fluctuations with the transfer function

where [ is the repetition rate and fcgq is the carrier-envelope [1—e-i2a17| .
offset frequency of the microcombs. Frequency noise Av(f) of AV(f) x K, = (m — n)Afr(f), where K, is the peak
Advanced Photonics Nexus 036011-6 May/Jun 2025 e Vol. 4(3)
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Fig. 4 Measured repetition-rate frequency noise PSD and timing jitter PSD and the correspond-
ing integrated RF linewidth and timing jitter of dispersion-managed soliton microcombs.
(a) Experimental setup of the SHLI. WDM, wavelength division multiplexer; FS, fiber stretcher;
EA, electronic amplifier; BPF, bandpass filter; PS, phase shifter; PID, proportional-integral-
differential controller. Inset: schematic illustration of the SHLI. (b1), (b2), and (b3) Measured fre-
quency noise PSD at different soliton states with a 49 m stabilized fiber link. The orange dashed
lines with 10 dB/decade slopes indicate repetition-rate frequency free-walk induced by microre-
sonator intracavity power fluctuations. The corresponding repetition-rate tone linewidth integrated
from 1 MHz to 10 kHz is denoted with purple curves. The repetition-rate carrier frequency is
89 GHz. (c1), (c2), and (c3) Timing jitter PSD measurement of the soliton microcombs at different
dynamical states with the calculated thermal-noise and quantum-noise limits. The timing jitter
theoretical models from Refs. 56 and 57 are quantum-noise and thermal-noise limits of the soliton
microcombs denoted, respectively, with solid orange and yellow lines. The corresponding
integrated timing jitter is included. The comparison between the measured timing jitter PSD
and prior works'™344+%8% g included as well.

voltage at the double-balanced mixer output. The transfer func- (%)2 Sav(f). The detected voltage fluctuation at the

. Lo . AT
tion shows that the measured voltage fluctuation is proportional nlfl(;‘; iareout Ut is separated into two parts. The first part svnchro
to |1 — e~2%/7| /|i x f|, which implies there will be null points at P p parts. patt sy

. . L nizes the fiber interferometer to the frequency microcombs,
the offset frequency f = 1/7 and its harmonics, providing the dine f Ik vi . lectri duced fib h
upper Fourier frequency limit of the timing jitter measurement. aI;/(S)l 11111 £ re}el: W? V12f1.1a plezpi eldl?fl_trans duc.e(:j hl "l?li Strete e;
The measured voltage fluctuation PSD is subsequently (FS) through a loop filter wit z bandwidth. the secon

converted into frequency noise PSD and further into timin part is recorded by a signal source analyzer, which gives the
jitter PSD S, ( f)qwith i]he relation Say (f) = (s )? —! :‘; timing fluctuation PSD and the frequency fluctuation PSD of
ATy AT \J) = e

2afx’ (m—n)? f2 the soliton microcomb repetition rate. To precisely remove
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the common-mode noise resulting from dispersion and increase
the interferometer signal-to-noise ratio, we utilize a delay con-
trol unit, which contains a motorized fiber delay line and a pair
of wavelength division multiplexing (WDM) couplers. This
timing-stabilized and dispersion-compensated fiber interferom-
eter can be considered a true time delay, which is an optical
counterpart of the delay line frequency discriminator in micro-
wave metrology.®

We convert the measured voltage fluctuation PSD on the
baseband into the repetition-rate frequency noise Syz, PSD
to examine the frequency noise behavior, as shown in
Figs. 4(b1)—4(b3) of the soliton microcomb at the single-soliton,
double-soliton, and soliton crystal states, respectively. The mea-
sured repetition-rate frequency noise PSD are 2556, 4151, and
4168 mHz? /Hz, respectively, at 100 kHz offset with a noise
frequency resolution of 64 mHz/Hz!/? at the single-soliton
microcomb. We observe that the repetition-rate frequency noise
features a 20 dB/decade slope below ~20 kHz offset, indicating
the repetition-rate random walk frequency noise. Based on the
power-law noise, soliton microcombs have a repetition-rate
flicker frequency walk from ~20 to 40 kHz offset, a white fre-
quency noise from ~40 to 200 kHz offset, and a flicker and
white phase noise from ~200 kHz to 1 MHz. The resulting in-
tegrated linewidths of the free-running repetition-rate tone are
shown in Fig. 4(b) for the three microcomb dynamical states.
We also note that the repetition-rate close-to-carrier phase noise
can be stabilized to a low-noise microwave oscillator.”*

Figures 4(c1)—4(c3) show the measured timing jitter PSD for
different soliton dynamical states. For the single-soliton comb,
the measured quantum-noise-limited timing jitter PSD is
0.4 as®>/Hz at 100 kHz offset. The corresponding integrated tim-
ing jitter is 1.7 fs = 0.07 fs when integrated from 10 kHz to
1 MHz, as shown in Fig. 4(c1), which is close to the timing jitter
in silica microresonator frequency microcombs measured with
similar technology.* The integrated timing jitter from 10 kHz to
44.5 GHz Nyquist is ~32.3 fs. The achieved femtosecond-level
jitter is enabled by close-to-zero intracavity dispersion to min-
imize group delay fluctuations, suppressed Kerr nonlinearities
within the tapered waveguide,” and the thermally stabilized
dual-driven approach. Our dispersion-managed microresonator
stretches the soliton pulse within the cavity, reducing the accu-
mulated nonlinear phase shift during pulse propagation. The
quantum-noise—limited timing jitter PSD of the two (double-
soliton and soliton crystal) states at 100 kHz offset are at
0.66 and 0.82 as?/Hz, respectively. This corresponds to an in-
tegrated jitter of 1.9 fs +0.06 fs and 1.8 fs 0.09 fs. The
dynamical noise is observed in the timing jitter PSD of the sol-
iton crystal microcomb at the offset frequency of ~8 MHz.
Compared with direct photon detection for timing jitter PSD
measurements,'” the SHLI method can effectively avoid the
IM-PM conversion and shot-noise limit. The measured timing
jitter PSD is comparable to prior works,'>***°* as shown in
Fig. 4(cl).

For each of the microcomb soliton states, we observe that the
timing jitter PSD drops with a 40 dB/decade slope within 3 to
20 kHz, as shown in Fig. 4(c). Deviation of timing jitter PSD
over low Fourier frequency is associated with mtracaVlty power
fluctuation leading to a 1/f* slope with the relation S 2 (f) =
(5= T )*Sr,(f) where intracavity power-induced roundtrfp fluc-
tuations Sp, o f7°.

Figure 4(c) also plots the theoretical cavity thermal bounds
on the timing jitter PSD with the yellow solid line, arising from
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thermo-refractive variation and bounding the measured timing
jitter PSD from 20 to 40 kHz with a 25 dB/decade slope
(1/£%3). In the DM microresonator, the thermal-noise—limited
timing jitter PSD, originating from the thermodynamic fluctua-
tions (67%) = kzT?/CVp, where V is the optical mode volume,
kg is the Boltzmann constant, T is the chip temperature, p is the
density, and C is the specific heat capacity, is described with the
following model:*'

)= ()L

Al (2zfr)* \frnodT) f*\/2z%pCf
1 1 0
& — &1+ Q2afry) P

where dn/dT is the thermorefractive coefficient, « is the thermal
conductivity, R is the microresonator ring radius, d,(z) =
Ik d,(;)dL/Leayiy is the half-width of the fundamental mode
along the tapered DM microresonator, and 7, = Zi—ﬁ%dﬁ From
40 to 600 kHz, the measured PSD falls with a quantum-noise—
limited 20 dB/decade slope (1/f2). The theoretical quantum-
noise timing jitter limit without shot noise is shown in Fig. 4(c)
with the orange solid lines following the model*®

1 v g{lwy
4212\ AoD 12 |96 A, f?

1 22 ZAD
50552
24 Y 17

where y is the half linewidth half height of the cavity resonance,

Sary (f)

(©))

fr is the repetition rate of the microcombs, g = ZZ h‘j‘:lL is the

nonlinear gain coefficient, ny(n,) is the refractive index
(nonlinear index) of the nitride resonator, . = 2zv,, v, is
the center frequency of the microcombs, ¢ is the light speed

in vacuum, D = — % is the normalized dispersion, and Ay =
@y — wp is the resonance-pump detuning. Above 600 kHz, the
measured PSD is limited to 8905 zs*>/Hz by the SHLI spectral
resolution.

Based on soliton theory, the quantum-noise—limited timing
jitter PSD model, especially in the high offset frequency
more than 10 kHz, can analytically predict noise behaviors
for different mode-locked states via the relation S,z (f)~

0.5294 £ Iwda 12 57 where E, 42}'0”‘ V2D, A, is the intra-

(2zf)? E__Tp’
1/2/x is the cavity FSR, D, is related to
the cavity GVD, 6 is the transmission of the microresonator, y..

cavity pulse energy, D

is the cubic nonlinearity parameter, 7,, & i o /2 = is the intracav-

ity pulse duration,” £ and a,, are the spontaneous emission fac-
tor and cavity loss, respectively. For different soliton states, the
quantum-noise—limited timing jitter PSD is inversely propor-
tional to the resonance-pump detuning and proportional to
square root of the cavity dispersion. The soliton microcomb
center frequency fluctuation PSD Sy, (f) can also be converted

into the timing jitter with the relation Syz, (f) ~ (5% 7-)7S a0, (f)s

where Aw. is the center frequency fluctuations induced by
avoided-mode crossings,”* odd-order dispersion,*” or Raman
effects.” In addition, the intracavity intensity fluctuations will
introduce the extra timing jitter PSD with the relation of
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Sar, (f)=Cx (”Pin)z(%)zsRIN(f)’ where n = dfr/dP;, is the
transduction factor, Py, is the microresonator intracavity power,
and C is a constant.***

We note our noise measurements of the frequency micro-
combs below the offset frequency of 20 kHz are still higher
than the microresonator theoretical thermodynamical limits.
This is attributed to the strong free-running intracavity power
fluctuations and pump-resonance detuning noise. Further active
stabilization of the intracavity power and pump-resonance
detuning™* can improve the timing jitter PSD at the low-offset
frequency. By increasing the tapered waveguide width (increas-
ing the effective resonant mode volume) and decreasing the cav-
ity GVD, the jitter of the frequency DM microcomb oscillator
can be improved to subfemtosecond timing imprecision.

4 Conclusion

In this study, the fundamental noise of dispersion-managed sol-
iton microcombs without a restoring force is examined in detail.
Dispersion-managed microcombs are deterministically and
reliably generated with a TE-TM dual-driven thermally stabi-
lized approach at the single-soliton, double-soliton, and soliton
crystal regimes. The RIN is determined to be —153.2 dB/Hz at
100 kHz offset for the single-soliton state, with parameters
bounded by the CW pump laser. The timing jitter PSD is
0.4 as?/Hz at 100 kHz offset, and the corresponding integrated
timing jitter is 1.7 fs & 0.07 fs from 10 kHz to 1 MHz (x32.3 fs
from 10 kHz to Nyquist 44.5 GHz). To the best of our knowl-
edge, we achieved femtosecond timing jitter for the first time in
dispersion-managed microcombs. The demonstrated results
show that the dynamic noise for the double-soliton and soliton
crystal in the RIN PSD is important to understand intracavity
soliton dynamics, with the single-soliton state having the lowest
jitter and with slight but quantifiable variations across different
soliton states.

The primary noise source at low-offset frequencies is the
fluctuation in effective cavity length, which arises from intra-
cavity power fluctuations in the microresonator. In dispersion-
managed microcombs, we observe negligible center frequency
shifts, which helps to prevent noise conversion processes related
to center frequency shifts. Future studies could explore how
high-order dispersion in these microresonators facilitates addi-
tional noise coupling mechanisms. By implementing feedback
to stabilize the pump laser’s intracavity power and frequency,
the timing jitter of the dispersion-managed chip-scale soliton
oscillator could be reduced to subfemtosecond levels. Further-
more, balancing factors such as detuning, nonlinearity, higher
order dispersion, and avoided-mode crossing in the microreso-
nator can further minimize timing jitter.
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Supplementary Information Content
L. Measurements of microcomb center frequency shift, timing jitter and pump intensity noise

IIL. Characterizing the self-heterodyne linear interferometer frequency discrimination
sensitivity and timing jitter measurement resolution

III.  Representative timing jitter performances of free-running passively mode-locked lasers.

I. Measurements of microcomb center frequency shift, timing jitter and pump intensity noise
The single-soliton microcomb center frequency shifts are measured in the dispersion-managed
[62] and uniform microresonators, as shown in Figures Sla and Slb, respectively. In the

dispersion-managed microresonator, the center frequency shift of the microcomb is negligible in
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contrast with a 4.65 nm wavelength shift of a 2 um waveguide width uniform microresonator when
pumping at the similar wavelength.
a b
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Figure S1 | Single-soliton optical spectra generated in the dispersion-managed and
homogenous uniform microresonators. a, Single-soliton optical spectrum from a dispersion-
managed microresonator. b, Single-soliton optical spectra generated in a uniform microresonator
at different pump wavelengths.

A microresonator laser frequency comb in the mode-locked state is generated via the dual-
driven pump approach, with a larger intracavity dispersion of -150.8 fs>’mm. We characterize the
timing jitter with the self-heterodyne linear interferometer (SHLI), and subsequently compare with
the original close-to-zero intracavity dispersion (path averaged GVD to -4.39 fs*/mm) mode-
locked frequency microcomb. This is illustrated in Figure S2. Figure S2a and S2b show the
measured cavity group velocity dispersion and the soliton microcomb optical spectrum. We
observed that this larger dispersion microresonator increases the timing jitter to 14.37 fs integrated
from 100 kHz to 10 kHz compared to our demonstration of the close-to-zero dispersion low-jitter
state of 1.7 £ 0.7 fs as shown in Figure S2c. The Fourier frequency bandwidth of the measured

timing jitter PSD is determined by our FFT analyzer bandwidth (SR 770 FFT Network Analyzer).
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Figure S2 | Self-heterodyne linear interferometry measurement of timing jitter in the mode-

locked soliton frequency microcomb, with larger intracavity dispersion in comparison with
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close-to-zero dispersion microresonator. a, Measured cavity group velocity dispersion. b,
Measured soliton microcomb optical spectrum. ¢, Measured timing jitter power spectral density.
Then, the pump laser intensity noise is characterized to illustrate the influence from electrical
noise, EDFA noise, and free-space-to-chip coupling noise as shown in Figure S3. Measurements
are conducted before the microresonator, after the microresonator when on and off resonance, and
without the EDFA and are compared against the detector and instrumentation noise floor. From
the RIN measurements, the free-space-to-chip coupling fluctuations below = 7 kHz can be
observed with additional intensity noise degradation. After the pump wavelength is tuned into the

resonance, the extra coupling noise below 1 kHz is observed as well.

-80
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Figure S3 | The measured relative intensity noise (RIN) of the pump laser.
II. Characterizing the self-heterodyne linear interferometer frequency discrimination
sensitivity and timing jitter measurement resolution

The fiber-delay-lined-based phase noise measurement is an averaged measurement
[34,48,63,64]. The photodetected signal of each mode is filtered at faom and mixed by an RF mixer
to reject the common-mode f.o noise. This downconverted RF mixer output contains the
repetition-rate phase noise or timing jitter as a form of 6[t(m - n)fiep]. The frequency fluctuations

of the two selected optical comb lines are converted into voltage fluctuations with the transfer

|1_e—i2n

o] il (m —n)Afr(f) where K, is the peak voltage at the double-balanced

function AV (f) < K,,

mixer output. In our manuscript, we used 49-meter fiber for the timing jitter power spectral density
measurement in the fiber Michelson interferometer which is noted in Figure 4 caption and Methods.

The time delay is around 0.49 ps corresponding to Fourier frequency of 2.04 MHz. This Fourier
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frequency set the upper offset frequency bound for our measurement. For the self-heterodyne
linear interferometry timing jitter measurement technique, the heterodyne beat note, frequency
discrimination calibration and the measured frequency noise are illustrated in Figure S4. The

heterodyne detection beat note magnitude and delay time determines the frequency discrimination

P . 1_e—i27'[f1.'
sensitivity via: AV (f)/Afr(f) x K, % (m—n).
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Figure S4 | Frequency discrimination and timing jitter measurement calibration. a, Example
measured heterodyne beat note at the 100 MHz frequency. b, Frequency discrimination calibration
of the system at 6.75 pV/Hz from 1 to 100-kHz offset. ¢, Measured frequency noise power spectral
density of 3-Hz?*/Hz at 3-kHz offset and 3x10-* Hz?>/Hz at 100-kHz offset.

To characterize the system sensitivity, we carried out the experiment by setting m = n, wherein
the noise floor is determined after common-mode noise rejection. The measured timing jitter
measurement sensitivity is illustrated in Figure S5 where we set the delay time to T = 489 ns, 742
ns, and 1.24 ps. First, we calibrate the timing jitter sensitivity as shown in Figure S5a which shows
the timing jitter power spectral density noise floor of 1.6 x 107!% fs2/Hz. Over the same integrated
frequency range of the timing jitter power spectral density, the integrated timing jitter is less than
0.1 fs. The system sensitivity calibration of sub-fs timing resolution shows the self-heterodyne

linear interferometry could enable the femtosecond timing jitter characterization.
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Figure S5 | The timing jitter measurement sensitivity. a, The determined timing jitter

measurement sensitivity with different delay times. b, The determined timing jitter power spectral

density and integrated timing jitter of the self-heterodyne linear interferometer noise floor.

ITI. Representative timing jitter and relative intensity noise performances of free-running

mode-locked lasers.

Table S1 below summarizes the comparison of timing jitter in representative free-running

mode-locked lasers. An example of applications enabled by the jitter-power tradeoffs can be seen

in Ref. [68]. The chip-scale frequency microcombs provide a small size, weight, power and

robustness compared to bulk mode-locked lasers. A low relative intensity noise is also helpful for

applications in communications, and sensing. For example, a -153-dB/Hz would help in

applications of optical communication for data processing. Most semiconductor diode lasers are

in the range of -150 dB/Hz to -170 dB/Hz [69]. This is illustrated in Table S2 below.

Table S1 | Example jitter com

arison of free-running mode-locked lasers.

Solid-state Laser /Fiber/ ngn;?% g)lttk;{rz tiIrIrl:iilgr?;tetir Integrated Fourier Measurement
Microcavity (f2/Hz) ( fgs ; frequency range method
500 MHz, SESAM, Er:Yb-glass 7%10° 0.016 | [10kHz - 250 MHz] OH?
laser [65]

80 MHz, CNT-SA, soliton Er- s a
fiber laser [66] 3x10 0.5 [10 kHz - 40 MHz] BOC

80 MHz, NPR, soliton Yb-fiber 6x10 18 [10 kHz - 40 MHz] BOC
laser [67] )

20 GHz Silicon nitride frequency 7107 High-speed
microcomb [12] detector
22 GHz silica microcombs [35] 1x1073 2.6 [10 kHz - 3 MHz] FI°

22 GHz silica microcombs [44] 1x10* - - BOC

89 GHz, dual-driven, soliton 4

nitride microcomb [this work] 310 L7 [10kHz - 1 MHz] SHLI
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BOC: Balanced optical cross-correlation, OH: optical heterodyne; FI: fiber interferometer; SHLI: self-

heterodyne linear interferometer.

Table S2 | Example RIN comparison of free-running mode-locked lasers.

Example laser frequency comb system

Relative intensity noise
[dB/Hz] at 1 kHz offset

Relative intensity noise
[dB/Hz] at 1 MHz offset

[this work]

frequency frequency
500 MHz, SESAM, Er:Yb-glass laser [70] -110 -140
1 GHz, SESAMa, soliton Yb:CALGO laser [71] -115 -145
194 MHz, NPRa, soliton Er-fiber laser [72] -140 -145
89 GHz, dual-driven, soliton nitride microcomb 118 - 153
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