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Mode-locked biphoton frequency combs exhibit multiple discrete comblike temporal correlations from the
Fourier transform of its phase-coherent frequency spectrum. Both temporal correlation and Franson interferom-
etry are valuable tools for analyzing the joint properties of biphoton frequency combs, and the latter has proven to
be essential for testing the fundamental quantum nature, the time-energy entanglement distribution, and the
large-alphabet quantum key distributions. However, the Franson recurrence interference visibility in biphoton
frequency combs unavoidably experiences a falloff that deteriorates the quality of time-energy entanglement and
channel capacity for longer cavity round trips. In this paper, we provide a new method to address this problem
towards optimum Franson interference recurrence. We first observe mode-locked temporal oscillations in a
5.03 GHz free-spectral range singly filtered biphoton frequency comb using only commercial detectors.
Then, we observe similar falloff trend of time-energy entanglement in 15.15 GHz and 5.03 GHz free-spectral
range singly filtered biphoton frequency combs, whereas, the optimum central time-bin accidental-subtracted
visibility over 97% for both cavities. Here, we find that by increasing the cavity finesse F , we can enhance
the detection probability in temporal correlations and towards optimum Franson interference recurrence in
our singly filtered biphoton frequency combs. For the first time, via a higher cavity finesse F of 45.92 with
a 15.11 GHz free-spectral range singly filtered biphoton frequency comb, we present an experimental ≈3.13-fold
improvement of the Franson visibility compared to the Franson visibility with a cavity finesse F of 11.14 at the
sixth time bin. Near optimum Franson interference recurrence and a time-bin Schmidt number near 16 effective
modes in similar free-spectral range cavity are predicted with a finesse F of 200. Our configuration is versatile and
robust against changes in cavity parameters that can be designed for various quantum applications, such as
high-dimensional time-energy entanglement distributions, high-dimensional quantum key distributions, and
wavelength-multiplexed quantum networks. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.483570

1. INTRODUCTION

Mode-locked biphoton states, exhibiting unique discrete spectral
and temporal multimode behavior within a single spatial mode
profile, can be generated by spontaneous parametric down-
conversion (SPDC) photons via cavity filtering [1–5], cavity en-
hancement [6–16], and by spontaneous four-wave mixing in
integrated microring resonators [17–21]. The mode-locked
behavior in a biphoton frequency comb (BFC) manifests itself
as interesting comblike temporal correlations via Hanbury–
Brown–Twiss-type interferometry [7–10,14,16,22], which can
be naturally exploited by direct joint temporal intensity (JTI)

measurements to verify high-dimensional frequency-bin entan-
glement with complementary joint spectral intensity (JSI) mea-
surements [23]. Such oscillations in the temporal domain can
also be used in chip-scale optical quantum information process-
ing [24–27], in time-bin-based quantum communication proto-
cols [28–32], and in quantum networks based on time-resolved
correlation measurements [33,34], including multiboson corre-
lation sampling schemes [35,36].

Time-energy entanglement, first formulated by Franson us-
ing a pair of unbalanced Mach–Zehnder interferometers
(MZIs) [37], has proven to be quintessential from fundamental
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and practical perspectives in the quantum optics community.
For example, the Franson interference is important for testing
quantum nature in a loophole-free test [38] for high-quality
long-distance time-energy entanglement distribution [39–44]
and for securing time-bin-based high-dimensional quantum
key distribution (QKD) against collective Gaussian attacks
[29,45,46]. This distinct mode-locked feature of BFC can
be revealed nonlocally via a Franson interferometry, leading
to discrete time-energy-entangled Franson interference recur-
rences, spaced by the round-trip time of the cavity [2–5].
The cavity geometry, the reflectivity of the mirrors, finesse
F , and the free spectral range (FSR) of the cavity determine
the JSI and the JTI of the generated mode-locked BFC states.
Indeed, the cavity serves as a tool to tailor the parameters of the
two-photon state via the two-photon mode-locked process, for
instance, to probe the time-energy entanglement via Franson
interferometry using off-the-shelf telecom compatible filters
[2–5] or to match the bandwidth of the SPDC photons to
a specific atomic transition line for quantum memory storage
[11–13,15,47–52]. Moreover, to the best of our knowledge, in
all of the previous demonstrations for cavity-filtered mode-
locked BFCs [1–5], the impact of the key figure of merit,
the cavity finesse F on both mode-locked temporal correla-
tions, and Franson interference recurrences remain unexplored.

In this paper, we utilize mode-locked singly filtered BFCs
based on the cavity-filtered scheme with a Fabry–Perot (FP)
cavity that is flexible and robust for experimental implementa-
tions. We examine the role of cavity finesse F in the mode-
locked signal-idler temporal cross correlations as well as in
the time-energy entanglement via Franson interferometry with
our experimental demonstrations and theoretical descriptions.
First, we observe the mode-locked temporal oscillations of a
singly filtered BFC using our second-order cross-correlation
function measurements with a cavity FSR of 5.03 GHz and
a bandwidth of 457 MHz. Such direct JTI measurements using
commercial single-photon detectors signify the existence of
spectral phase coherence in the cavity-filtered BFC scheme
for the first time. Second, we measure and quantify the falloff
trend of the time-energy entanglement in our singly filtered
BFCs based on 15.15 GHz and 5.03 GHz cavities via Franson
interferometry, spanning up to six time bins with the highest
central time-bin accidental-subtracted visibility over 97% for
both cavities. Such JSI measurements are consistent and com-
plementary with our JTI measurements. We find out the cavity
finesse F plays a central role towards optimum temporal cor-
relations and Franson interference recurrence in our singly
filtered mode-locked BFCs by comparing different cavity con-
figurations. For the first time, via a higher cavity finesse F of
45.92 in a 15.11 GHz BFC, we measured a Franson recurrence
visibility of 69.86% with an approximately 3.13-fold improve-
ment of Franson visibility compared to the Franson visibility
with cavity finesse F of 11.14 at the sixth time bin, approaching
the quantum-classical limit of 70.7%. Moreover, for the 16th
time bin in the same BFC, there is a potential approximately
24-fold improvement of the Franson visibility for a cavity
finesse F of 45.92 compared to the Franson visibility with
a cavity finesse F of 11.14. Near-optimum Franson interfer-
ence recurrence and a time-bin Schmidt number K T near

16 effective modes in similar FSR fiber cavity are predicted with
a cavity finesse F of 200. Our results pave the way for produc-
ing high-quality mode-locked temporal correlations for time-
resolved correlation-based quantum networks and can be help-
ful in pushing the limit of the Hilbert space dimensionality in
the temporal domain [3], for high-quality long-distance high-
dimensional time-energy entanglement distributions [4,53,54]
and on-chip optical quantum information processing.

2. RESULTS AND DISCUSSION

A. Experimental Setup
The working principle of our experiment is illustrated in
Fig. 1(a). We used singly filtered mode-locked BFC sources
where the SPDC source is a fiber-coupled type-II phase-
matched periodically poled KTiOPO4 (ppKTP) waveguide
of fiber-coupling efficiency of ≈50% per facet, driven by a
self-injection-locked continuous-wave laser at 658 nm wave-
length [55]. The singly filtered BFCs are generated by sending
the signal photon of the orthogonally polarized frequency-
degenerate photon pairs at 1316 nm with a 245 GHz FWHM
phase-matching bandwidth to three fiber FP cavities with

Fig. 1. Measured single-photon cross correlations and time-
energy entanglement using a 5.03 GHz FSR singly filtered BFC.
(a) Schematic of experimental configuration. FRM, Faraday mirror;
C.C., coincidence counts; SNSPD, superconducting nanowire sin-
gle-photon detector. Inset: the signature of observed Franson interfer-
ences, with the single-sided correlation function revealed (see the
highlighted region in the blue dashed lines). (b) Measured JTI of a
5.03 GHz FSR singly filtered BFC. The photon coincidence data
are recorded between two detectors, and we sift the coincidence data
into frames of duration d × T bin, composed of d time bins of duration
T bin. We choose T bin to be 16 ps to enhance the resolution of tem-
poral correlations. This d of 128 shows that there are ∼4 clean cross
correlations from a� to d� in our 5.03 GHz singly filtered BFC. The
red arrow indicates both the cross sections of measured JTI [also
shown in the inset of (b)], and the direction of singly filtered temporal
waveform. Inset: measured zoom-in second-order cross-correlation
function between signal and idler photons. The periodic structure
traces the cavity round-trip time of 198.9 ps. A cavity bandwidth
of 457 MHz can be derived by the exponential decay of the envelope.
Our result in the inset of (b) is consistent with our results in (b).
(c) Example measured JSI of a 5.03 GHz FSR singly filtered BFC.
For these measurements, we use a pair of tunable frequency filters
to scan from the −9 to�9 frequency bins. (d) The observed quantum
time-energy entanglement of a 5.03 GHz FSR singly filtered BFC
source and witnessed Franson fringe with an accidental-subtracted
visibility of 97.79% for central time bin.
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5.03 GHz, 15.11 GHz, and 15.15 GHz FSR, respectively. The
idler photon is untouched. The cavity FWHM bandwidths are
0.46 GHz, 0.329 GHz, and 1.36 GHz, respectively. The gen-
erated singly filtered mode-locked BFCs state is then directed to
a stabilized Franson interferometer for nonlocal interference
measurements. After the Franson interferometer, coincidences
are recorded with two commercial superconducting nanowire
single-photon detectors (SNSPDs, ≈85% detection efficiency
and root-mean-square timing jitter ≈55 ps, PhotonSpot, Inc.).
We first measure the quantum signature of Franson interfer-
ence, the three temporally separated correlation peaks as pre-
sented in the inset of Fig. 1(a). We observe clear single-
sided temporal second-order cross-correlation structures for
all Franson correlation peaks. Details of the experimental setup
for singly filtered mode-locked BFC sources can be found in
Fig. 5 of Appendix A.

Our Franson interferometry is composed of two unbalanced
MZIs with the path-length difference measured to be
ΔT � 4.84 ns, supporting the probing of time-energy entan-
glement [37]. We use a thermal heater in the long path of arm1
to sweep and fine-tune the relative phase shift ΔT 1 between
the two MZIs to probe the time-energy entanglement of our
singly filtered BFCs. In addition, a motorized stage delay in
arm2 with ΔT 2 up to 360 ps is used to select different time
bins, and temperature controllers with long-term temperature
stability of ≈1 mK are implemented to stabilize our Franson
interferometry.

B. Model of Mode-Locked Singly Filtered BFCs
Here, we analyze the role of cavity finesse F in the model of
mode-locked singly filtered BFC, focusing on temporal second-
order cross-correlation function and Franson interference re-
currences based on our experimental setup. The mode-locked
signal-idler temporal second-order cross-correlation function of
singly filtered BFC can be written as [4,8,14]

K cross
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Here, τ � t signal − t idler; NS is the source brightness;
tcoh � 3.62 ps is the coherence time of our SPDC source;
and Δω∕2π � 225 GHz is the FWHM bandwidth of the
Gaussian bandpass filter (BPF). The key figure-of-merit cavity
finesse F is given by
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where ΔΩ is the FSR of the cavity; Δωc is the cavity band-
width; ΔT cavity is cavity round-trip time; l rt is the total
round-trip optical losses including scattering losses, clipping
losses, absorption and transmission losses; λ is the cavity mode
wavelength; Q is the cavity quality factor; and L is the cavity
optical length. For a linear planar FP cavity, the cavity finesse F
is proportional to cavity quality factor Q.

By using Eqs. (1) and (2), we obtain the Franson interfer-
ence recurrence envelopes with maximum and minimum
coincidence counts as follows:
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where η 0S , η
0
I include all losses encountered in our measurement

setup and T g is the coincidence counting window of 2 ns.
Subsequently we can obtain the Franson interference recur-
rence visibilities at the nth time bin in a singly filtered BFC
to be

V n � exp�−nπ∕F�: (5)

Equations (1) and (5) allow us to evaluate the impact of
cavity finesse F on the signal-idler temporal second-order
cross-correlation function and visibilities for the Franson inter-
ference recurrence numerically, enabling the comparison with
our experimental measurements of singly filtered mode-
locked BFCs.

C. Experimental and Theoretical Results
Next, in Fig. 1(b), by using experimental setup in Fig. 5 of
Appendix A, we measure the JTI of our 5.03 GHz FSR singly
filtered BFC using large-alphabet encoding [29]. We sift the
coincidence data into frames of duration d × T bin, composed
of d time bins of duration T bin. We choose T bin to be 16 ps to
enhance the resolution of temporal correlations. This d of 128
shows that there are ∼4 clean cross correlations from a� to d�

in our 5.03 GHz singly filtered BFC. The red arrow indicates
both the cross sections of measured JTI [also shown in the inset
of Fig. 1(b)], and the decay direction of singly filtered temporal
waveform. The inset of Fig. 1(b) shows the corresponding g �2�

measurements of the signal-idler temporal second-order cross-
correlation function for the same singly filtered BFC. Using a
5.03 GHz FSR fiber cavity and commercial SNSPDs, we
observe a clear comblike structure of the temporal correlation,
resulting from the mode-locking process of our singly
filtered BFC source. The time interval t rt is measured to be
≈200 ps, which matches well with a cavity FSR of
5.03 GHz (≈198.8 ps). Cavity damping rate is extracted to
be ≈458.7 MHz from our measurements with the exponential
decay of the mode-locked oscillations envelope, and this value
closely matches the cavity bandwidth of 457 MHz [8,9]. Our
result in the inset of Fig. 1(b) is consistent with our results in
Fig. 1(b). This is the first experimental measurement of signal-
idler temporal second-order cross-correlation function that
probes the JTI in cavity-filtered BFC scheme using only
commercial detectors, certifying the existence of phase coher-
ence for our multimode quantum source. Such JTI measure-
ments, when paired with JSI measurements [example JSI
measurements for the same singly filtered BFC are shown in
Fig. 1(c), where we scan multiple frequency bins within the
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phase-matching bandwidth of our biphoton source using a pair
of tunable frequency filters], reveal genuine high-dimensional
frequency-bin entanglement via providing mutual information
of biphoton phase coherence [23].

We next perform Franson interference measurements for
the 5.03 GHz FSR singly filtered BFC. Figure 1(d) shows
the optimized maximum Franson interference of the central
time bin in a 5.03 GHz FSR cavity. For this measurement,
we sweep the thermal heater in arm1 to tune the relative
phase-shift ΔT 1 between the two MZIs, whereas, fixing the
motorized stage position ΔT 2 at the center of the optimum
Franson interference. By postselecting coincidence events oc-
curring within a 2 ns wide coincidence time window, while
changing the phases of the interferometers (ΔT 1), we obtain
a maximum visibility of 97.79% for the 5.03 GHz FSR singly
filtered BFC, after accidental coincidence subtraction. The
Franson visibility is calculated based on �Cmax − Cmin�∕
�Cmax � Cmin�, where Cmax is the maximum interference
fringe coincidence counts and Cmin is the minimum interfer-
ence fringe coincidence counts.

Due to the mode-locking process of our singly filtered BFC,
the two-photon mode-locked oscillations in the temporal do-
main will result in discretized time-energy entanglement.
Indeed, by using both 5.03 GHz and 15.15 GHz FSR singly
filtered BFCs, we measure the Franson interference recurrences
over two and six time bins, respectively, as presented in Fig. 2.
For a 15.15 GHz FSR singly filtered BFC, we observe the
Franson interference fringes visibilities to be 98.97%,
74.32%, 54.37%, 40.56%, 31.50%, and 22.32%, after sub-
tracting the accidental coincidence counts as shown in
Figs. 2(a)–2(f ) (see Fig. 6 in Appendix B for the measured
quantum signatures of Franson interferences for the
15.15 GHz FSR singly filtered BFC). Then, in Fig. 2(g),
we compare our experimental results with theoretical modeling.
In the insets of Fig. 2(g), we observe Franson interference
fringes visibilities to be 97.79% and 72.32%, after accidental
coincidence subtraction for the 5.03 GHz FSR singly filtered
BFC. The number of measurable time bins is limited by both
the FSR of the cavity and the motorized stage position ΔT 2 in
arm2 of our Franson interferometer. Besides, we also measure
the noninteger cavity round-trip-time Franson interferences for
the center time bin in both singly filtered BFCs. This is illus-
trated in Fig. 7 of Appendix B with an absence of the Franson
interference fringes, which confirms the discretization of singly
filtered BFCs due to mode-locking process. These JSI measure-
ments are consistent with our JTI measurements in Fig. 1(b) of
≈200 ps cavity round-trip time, confirming the mode-locked
phase coherence behavior of our singly filtered BFC.

Interestingly, we find that although these two cavities have
different FSRs and cavity bandwidths, they have similar cavity
finesse F (F 5.03GHz � 10.93 and F 15.15GHz � 11.14), resulting
in the close trend of the recurrence visibilities in the Franson
interference, illustrated by bidirectional black arrows in Fig. 2
(g) between experiment and theory. This indicates that the cavity
finesse F plays a key role in determining the quality of time-en-
ergy entanglement over multiple time bins. By increasing this
figure of merit, the falloff of Franson interference recurrence vis-
ibilities over multiple cavity round-trip times can be improved.

Figure 3 presents the modeling and measurement of the
normalized signal-idler temporal second-order cross-correlation
function and Franson interference recurrence visibilities for the
two cavities. To better resolve the mode-locked oscillations, we
set the FWHM timing jitter to be 20 ps, relevant to current
state-of-the-art low-jitter superconducting single-photon detec-
tors [56]. In Figs. 3(a) and 3(b), we plot the signal-idler tem-
poral second-order cross-correlation function of 5.03 GHz
[experiment is presented in Fig. 1(b)] and 15.15 GHz FSR
cavities with different cavity finesses F for comparison. Both
results show that when the cavity finesse F increases to 30
in cavities under the same FSR, the cavity damping rate be-
comes smaller, resulting in an increased probability to detect
signal photons at multiples of the cavity round-trip time t rt
after idler photons arrive at the single-photon detector. We ob-
serve a similar trend for Franson interference recurrence visibil-
ities (measurements results are given in Fig. 2) as shown in
Figs. 3(c) and 3(d). There is a clear improvement of modeled
Franson visibilities when the cavity finesse F is ≈3 times larger
than our experimental results in Fig. 2. For the 5.03 GHz FSR
singly filtered BFC, we find that a small cavity finesse F of 30
can result in all the Franson interference recurrence visibilities
to be higher than the quantum-classical limit of 70.7% [37,57]
in the 1 ns temporal range. For the 15.15 GHz FSR singly

Fig. 2. Experimentally observed discretized time-energy entangle-
ment using 5.03 GHz and 15.15 GHz FSR singly filtered BFCs.
(a)–(f ) Franson recurrence interference fringes with six discrete
time bins measured in a 15.15 GHz FSR singly filtered BFC.
(g) Theoretical Franson revival visibilities for 15.15 GHz and
5.03 GHz FSR singly filtered BFCs with superimposed experimental
observations. Further included in a� and b� are measured Franson
recurrence time bins in a 5.03 GHz FSR singly filtered BFC. The
experimentally measured (theoretical) visibilities for the six time bins
(in red) for the 15.15 GHz FSR singly filtered BFC are 98.97%
(100%), 74.32% (75.43%), 54.37% (56.89%), 40.56% (42.91%),
31.5% (32.37%), and 22.32% (24.41%), respectively. For the two
time bins in a 5.03 GHz FSR singly filtered BFC, the experimentally
measured (theoretical) visibilities are 97.79% (100%) and 72.23%
(75.03%), respectively. The two bidirectional black horizontal arrows
indicate the similarity of Franson revival visibilities between two
cavities. All measurements are performed with a coincidence window
of 2 ns and the reported visibilities are after subtracting accidental
coincidences.
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filtered BFC, the Franson visibility at the 16th time bin with
cavity finesse F of 30 is ≈14-fold higher than that with cavity
finesse F of 11.14. Due to the increasing probability of
detecting mode-locked temporal oscillations at the single-
photon detector with a cavity finesse F of 30, the Franson
interference recurrence visibilities increase correspondingly.

Here, via using a 45.92 cavity finesse F with a 15.11 GHz
FSR singly filtered BFC, we experimentally demonstrate im-
proved Franson interference recurrence. Figure 3(e) shows
the Franson recurrence interference fringes with six discrete
time bins measured in a 45.92 cavity finesse F singly filtered
BFC. The experimentally measured (theoretical) visibilities for
the six time bins (in red) for the 15.11 GHz FSR singly filtered
BFC are 98.76% (100%), 92.69% (93.39%), 86.45%
(87.21%), 80.64% (81.45%), 75.01% (76.06%), and
69.86% (71.03%), respectively. All measurements are per-
formed with a coincidence window of 2 ns, and the reported
visibilities are after subtracting accidental coincidences. This
exemplifies that the cavity finesse F is a key parameter for op-
timizing both the temporal correlations and the Franson inter-
ference recurrence of the mode-locked biphoton states.

D. Discussions
Cavity finesse F tailors the intrinsic joint biphoton properties
of mode-locked singly filtered BFCs as shown earlier in the
Franson interference recurrence and signal-idler temporal
second-order cross-correlation function. For the above signal-
idler temporal second-order cross-correlation functions and
Franson interference recurrence, cavity finesse F plays a key
role because it is proportional to the number of round trips
before a single photon leaves the cavity or is lost via dissipation.
Indeed, from Eq. (2), for our linear planar FP cavity, the cavity
finesse F is proportional to cavity quality factor Q. Therefore,
increasing the cavity finesse F is equivalent to increasing the
cavity Q factor where photons can travel more round trips
in the cavity, whereas, storing more energy before they are lost
in dissipation or leave the cavity. This results in a lower cavity
damping rate with the same FSR, therefore, increasing the
detection probability in signal-idler temporal second-order
cross-correlation function after multiple cavity round-trip
times t rt. This flattens the time-energy entangled Franson re-
currence interferences. In our case, the design of FP cavity
mostly depends on our measurement setups. The FSR decides
the frequency-bin spacing, time interval t rt, and Franson revival
periods, whereas, our motorized stage delay in arm2 of Franson
interferometry sets the measurable Franson interference recur-
rence. Therefore, in order to access multiple time and fre-
quency bins of our singly filtered BFCs, we choose to use
5 GHz and 15 GHz FSR cavities in this paper. In our prior
works, we implemented a larger cavity FSR for denser Franson
revival interferences, whereas, having less frequency bins in
our BFC [3,4]. The bandwidth of the cavity, which is related
to its finesse F and FSR, can be chosen to achieve higher
detection rate in signal-idler temporal second-order cross-
correlation function and to approach flattened Franson revival
interferences.

In Fig. 4, we present the temporal second-order cross-
correlation peak values and Franson interference recurrences
for the 6th and 16th time bin in 15 GHz FSR singly filtered
BFCs for higher cavity finesse F . For mode-locked oscillations
in the temporal domain, we plot signal-idler temporal second-
order cross-correlation peak values versus different cavity fi-
nesse F of 11.14, 30, 50, 100, and 200 in a 15.15 GHz
FSR cavity with an FWHM timing jitter of 20 ps as shown
in Fig. 4(a). It can be seen that by using a moderate cavity

Fig. 3. Modeled and experimental mode-locking oscillations, Franson
revival visibilities for 5.03 GHz, 15.15 GHz, and 15.11 GHz FSR singly
filtered BFCs. (a) and (b) Theoretical signal-idler cross-correlation func-
tions for the 5.03 GHz and 15.15 GHz FSR singly filtered BFCs
with cavity finesse F of 10.93 [experiment data for cavity finesse F
of 10.93 shown in the inset of Fig. 1(b)], 30, 11.14, and 30, respectively.
For calculations in (a) and (b), the FWHM timing jitter of the single-
photon detector is set at 20 ps. (c) and (d) Modeled Franson recurrence
visibilities for the 5.03 GHz and 15.15 GHz FSR singly filtered BFCs
with varied cavity finesses F of 10.93, 30, 11.14, and 30. Note that
for 5.03 GHz FSR with a cavity finesses F of 10.93 GHz, and for
15.15 GHz FSR with a cavity finesse F of 11.14 singly filtered BFCs,
our measurement results are provided in Fig. 2. Due to the increasing
probability of detecting mode-locked temporal oscillations at the single-
photon detector with a cavity finesse F of 30, the Franson interference
recurrence visibilities increase correspondingly. This exemplifies that the
cavity finesse F is a key parameter for optimizing the temporal correla-
tions and Franson interference recurrence of the mode-locked biphoton
states. (e) Experimentally measured Franson interference recurrence us-
ing a 15.11 GHz FSR, cavity finesse F 45.92 singly filtered BFC. a�–f �

Franson recurrence interference fringes with six discrete time bins mea-
sured in a 45.92 cavity finesse F singly filtered BFC. The experimentally
measured (theoretical) visibilities for the six time bins (in red) for the
15.11 GHz FSR singly filtered BFC are 98.76% (100%), 92.69%
(93.39%), 86.45% (87.21%), 80.64% (81.45%), 75.01% (76.06%),
and 69.86% (71.03%), respectively. All measurements are performed
with a coincidence window of 2 ns and the reported visibilities are after
subtracting accidental coincidences.
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finesse F of 200 for both the 6th and the 16th time bins, signal
photons are more likely to be detected after idler photons are
counted at the detector, resulting in higher temporal correlation
peak values. This improved JTI may be useful for temporal-
multiplexing using singly filtered BFCs. In Fig. 4(b), we illus-
trate the effect of cavity finesse F on Franson interference
recurrences and time-bin Schmidt number K T with our exper-
imental results of a cavity finesse F of 11.14 and a higher cavity
finesse F of 45.92 superimposed (orange stars).

The improvement of Franson interference recurrence is de-
scribed in Eq. (5). The measured sixth time-bin Franson vis-
ibility for a 15.11 GHz FSR cavity with a higher finesse F of
45.92 is 69.86% (71.03% for theoretical visibility) after sub-
tracting accidental coincidences, which is very close to the vis-
ibility of quantum-classical limit of 70.7% (the black dotted
line). Here, by using a cavity with higher finesse F of
45.92, we observe an experimental ≈3.13-fold improvement
of the Franson visibility. All the other measurement data in
45.92 cavity finesse F singly filtered BFC are presented in
Fig. 3(e). Besides, for the 16th time bin in the same BFC, there
is a potential ≈24-fold improvement of the Franson visibility

for a cavity finesse F of 45.92 compared to the Franson visibil-
ity with a cavity finesse F of 11.14. The light green and yellow
bars represent the theoretical time-bin Schmidt number K T
from the Franson recurrence visibilities up to the 6th and
16th time bins, respectively. Here, we define time-bin
Schmidt number K T analog to the frequency-bin Schmidt
number from literature [3,4,18,19]. In the time domain, we
have a Schmidt number given by K T � �P λ2n�−1, whereP

λn � 1 with fλng being that domain’s Schmidt mode eigen-
values. Then, due to the difficulty in measuring joint temporal
amplitude (JTA), we use pure state assumption [3,4] such that
JTA equals the square root of the binned JTI. By sampling the
temporal wave function of our singly filtered BFC, at
τ � nΔT cavity , we can obtain its binned JTI as

jΨ�nΔT �j2 � exp�−2nΔΩΔT cavity�P
N
n�0

exp�−2nΔΩΔT cavity�
. Combining the JTI of

our singly filtered BFC and Eq. (5), we can obtain time-bin
Schmidt mode eigenvalues as λn � e−πn∕FP

M
m�0

e−πm∕F
, for

0 ≤ n ≤ M , whereM � 1 is the number of Franson recurrence
interference time bins. Therefore, given Franson recurrence in-
terference visibility up to the 6th (experiment) and 16th
(theory) time bins for 15 GHz singly filtered BFCs, we can
extract their corresponding time-bin Schmidt number K T .
We note that this method can also be used for extracting
the time-bin Schmidt number using Hong–Ou–Mandel revival
interferences [2,3].

Deep red dotted lines are the experimentally measured
sixth time-bin Schmidt number K T of 4.82 (4.92 from
theory) for a 11.14 cavity finesse F , and the sixth time-bin
Schmidt number K T of 5.91 (5.92 from theory) for a
45.92 cavity finesse F , respectively. As cavity finesse F in-
creases to 200 for the 16th time bin, the time-bin
Schmidt number K T is equal to ≈16 effective modes, which
is because the Franson revival visibility approaches the opti-
mum limit of 100%. As illustrated in Fig. 4(b), we found out
the time-bin Schmidt number K T for a cavity finesse F of
200 is 15.92, and that for a cavity finesse F of 11.14 is
5.99. Hence, the effective temporal Hilbert space dimension-
ality, thus, potentially increases from 35 to 253. In Fig. 4, we
choose to use cavities with FSR of 15 GHz because this FSR is
closed to maximum FSR in cavity-enhanced SPDC sources
[8,14,16,58–63]. Furthermore, this 15 GHz FSR cavity is
compatible with the current fiber Bragg grating filters in op-
tical communications for frequency-domain projection mea-
surements [3]. Here, we note that our schemes are robust and
flexible without requiring a stabilization system nor
customized cavity design compared to cavity-enhanced
SPDC sources [8,14,16,64–68]. Besides, in Fig. 8 of
Appendix C, we also illustrate the effect of cavity finesse F
on the temporal second-order cross-correlation function
and Franson interference visibilities for a 50 GHz FSR singly
filtered BFC. We note that the signal-idler temporal second-
order cross-correlation function measurements are limited by
the detection jitter of commercial single-photon detectors for
50 GHz FSR cavity, and they can be resolved by the Franson
interference measurements experimentally accessible with
current interferometric technology [2–5,69].

Fig. 4. Towards optimum mode-locked oscillations, Franson inter-
ference recurrence, and time-bin Schmidt number K T in 15 GHz sin-
gly filtered BFCs. (a) Theoretical signal-idler cross-correlation peak
values for 15.15 GHz FSR singly filtered BFCs with cavity finesse
F of 11.14, 30, 50, 100, and 200, respectively. (b) Franson recurrence
visibilities and time-bin Schmidt number K T for 15.15 GHz FSR
singly filtered BFC with cavity finesse F of 11.14, 30, 50, 100,
and 200, respectively. The experimentally measured Franson visibil-
ities (orange stars) are superimposed for a 15.15 GHz FSR cavity with
a finesse F of 11.14, and a 15.11 GHz FSR cavity with a higher finesse
F of 45.92, respectively. The measured sixth time-bin Franson visibil-
ity for a 15.11 GHz FSR cavity with a higher finesse F of 45.92 is
69.86% (71.03% for theoretical visibility) after subtracting accidental
coincidences, which is close to the visibility of the quantum-classical
limit of 70.7% (the black dotted line). Here, by using a higher cavity
finesse F of 45.92, we observe an experimental ≈3.13-fold improve-
ment of the Franson visibility compared to the Franson visibility with a
cavity finesse F of 11.14 at the sixth time bin. Besides, for the 16th
time bin in same BFC, there is a potential ≈24-fold improvement of
the Franson visibility for a cavity finesse F of 45.92 compared to the
Franson visibility with a cavity finesse F of 11.14. As cavity finesse F
increases to 200 for the 16th time bin, the time-bin Schmidt number
K T becomes ≈16, which is because the Franson revival visibility ap-
proaches optimum limit of 100%. The light green and yellow bars
represent the theoretical time-bin Schmidt number K T from the
Franson recurrence visibilities up to 6th and 16th time bins, respec-
tively. The deep red dotted lines are the experimental time-bin
Schmidt number K T at the sixth time bin.
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3. CONCLUSION

We have shown experimentally and theoretically that cavity fi-
nesse F acted on joint biphoton properties of mode-locked sin-
gly filtered BFCs, manifesting in the signal-idler temporal
second-order cross-correlation function and Franson interfer-
ence recurrence. We measured the similar trend of time-energy
entanglement of 5.03 GHz and 15.15 GHz FSR mode-locked
singly filtered BFCs via Franson interferometry with interfer-
ence fringes observed over six and two time bins, and with op-
timum central time-bin accidental-subtracted visibility of
98.97% and 97.79%, respectively. Increasing the cavity finesse
F from small to moderate values led to a lower cavity damping
rate with the same FSR, increasing detection probability in the
signal-idler temporal second-order cross-correlation function
after multiple cavity round-trip times t rt and flattening the vis-
ibility decay of the Franson interference recurrence in our sin-
gly filtered mode-locked BFCs. Via a higher cavity finesse F
45.92 singly filtered BFC, we experimentally present a
≈3.13-fold improvement of Franson visibility compared to
the Franson visibility with cavity finesse F of 11.14 at the sixth
time bin, close to the quantum-classical limit of 70.7%.
Furthermore, for the 16th time bin in the same BFC, there
was a potential ≈24-fold improvement of the Franson visibility
for a cavity finesse F of 45.92 compared to the Franson visibil-
ity with a cavity finesse F of 11.14. By using a cavity finesse F
of 200, we predicted a time-bin Schmidt number K T near 16
effective modes, which was coming from the near-optimum
Franson interference recurrence for all the time bins. Our re-
sults paved the way for optimum Franson interference recur-
rence towards scaling up the time-bin Schmidt number K T
and the Hilbert space dimensionality in the temporal domain,
and for high-quality long-distance high-dimensional time-
energy entanglement distribution and QKD.

APPENDIX A: DETAILS OF EXPERIMENTAL
SETUP

In Fig. 5, we provide the details of the experimental scheme for
generating singly filtered BFC. For our continuous-wave

pumped source, we customize a tunable stabilized self-injection-
locked 658 nm laser to achieve single-longitudinal mode lasing
with wavelength tunability of several nanometers for optimizing
the photon flux. We couple our tunable continuous-wave laser
operating at ≈2 mW and ≈658 nm into a 1.6 cm long ppKTP
waveguide, temperature controlled at 26.5°C for SPDC under
type-II phase matching [2–5]. The fiber-coupled SPDC outputs
are collimated in a low-loss fiber bench and sent through a
long-pass filter (LPF) to block the pump, followed by a 1.3 nm
BPF centered at 1316 nm to clean the SPDC spectrum fur-
ther. We use an FPC and an FPBS to separate and balance
the orthogonally polarized signal and idler photons, coupling
them into their respective SMF-28 single-mode optical fibers.
The three-fiber FP cavities are placed in the signal path for singly
filtered BFCs generation. We carefully tune the fiber cavity tem-
perature to align its transmission peaks with the generated en-
tangled photons to maximize the coincidences of our singly
filtered BFCs.

APPENDIX B: MEASURED SIGNATURE OF
FRANSON INTERFERENCES FOR 5.03 GHz AND
15.15 GHz FSR SINGLY FILTERED BFCS

In this section, we present the experimental measurements for
the signature of Franson interference using our setup in main
text Fig. 1(a). We measure three correlation peaks for different
phase shifts induced by varying the thermal heater in the long
path of arm1 of our Franson interferometry where it is clear
that only the central peak intensity changes, whereas, the lateral
peaks are unaffected. The phases for the measurements re-
ported in Figs. 6(a) and 6(c) are such that the middle peak
was maximized and minimized, respectively. By postselecting
the central correlation peak and changing the phases of the
interferometers (ΔT 1), we obtain a maximum Franson visibil-
ity for the 0th time bin over 98.99% in a 15.15 GHz FSR
singly filtered BFC after subtracting accidental coincidences.

Then, in Figs. 7(a) and 7(b), we proceed to measure the
noninteger cavity round-trip time Franson interferences for
5.03 GHz and 15.15 GHz FSR mode-locked singly filtered
BFCs. When we translate the motorized stage with a ΔT 2 that
is the noninteger cavity round-trip time, such as 360 ps, we
observe an absence of the Franson interference fringes. The
measured average coincidence counts are consistent with our
results in the main text, Fig. 2. This confirms the Franson

HWP

Laser

658 nmSPDC

Fiber cavity
BPF FPC

LPFBFC source

FPBS

Fig. 5. Details of the experimental scheme for generating singly fil-
tered BFCs. For our continuous-wave pumped source, we customize
a tunable stabilized self-injection-locked 658 nm laser to achieve
single-longitudinal mode lasing with wavelength tunability of several
nanometers for optimizing the photon flux. We couple our tunable
continuous-wave laser operating at ≈2 mW and ≈658 nm into a
1.6 cm long ppKTP waveguide, temperature controlled to 26.5°C
for SPDC under type-II phase matching [2–5]. Then, three-fiber
FP cavities are placed in the signal path for singly filtered BFCs gen-
eration. We carefully tune the fiber cavity temperature to align its
transmission peaks with the generated entangled photons to maximize
the coincidences of our singly filtered BFCs. LPF, long-pass filter;
BPF, band-pass filter; FPC, fiber polarization controller; FPBS, fiber
polarizing beam splitter.
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Fig. 6. Signature of Franson interference in the quantum regime.
The phases for the measurements reported in (a) and (c) are such that
the middle peak was maximized and minimized, respectively. By post-
selecting the central correlation peak and changing the phases of the
interferometers (ΔT 1), we obtain a maximum Franson visibility for
the 0th time bin over 98.99% in a 15.15 GHz FSR singly filtered
BFC after subtracting accidental coincidences.
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interference recurrence only occurs when temporal delay is
equal to integer of cavity round-trip times.

APPENDIX C: MODELING OF TEMPORAL
SECOND-ORDER CROSS-CORRELATION
FUNCTION AND FRANSON RECURRENCE FOR
A 50 GHz FSR SINGLY FILTERED MODE-
LOCKED BFC

Finally, in this appendix, we provide the modeling of signal-
idler temporal second-order cross-correlation function and
Franson revivals visibility for a 50 GHz FSR cavity singly fil-
tered mode-locked BFC. In Fig. 8(a), we model the signal-idler
temporal second-order cross-correlation function versus four
different cavity finesses F in a 50 GHz FSR cavity with an
FWHM jitter of 20 ps. Due to the denser temporal spacing
of mode-locked oscillations from a larger cavity FSR (compared
to the 15.15 GHz FSR in the main text, for example) for a
cavity finesse F of 500, there is a more than 50% probability
to detect signal photons at 49 cavity round-trip times t rt after
idler photons are counted at detector across the whole 2 ns tem-
poral range. In Fig. 8(b), we plot the Franson interference

recurrences for four different cavity finesses F of 30, 100,
200, and 500 in the same temporal range. We note that with
a moderate cavity finesse F of 500, all of the Franson interfer-
ence recurrence visibilities surpass the quantum-classical
threshold of 70.7% [37,57], confirming the time-energy entan-
glement over a 2 ns temporal range.
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