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S.I. Disorder analysis 

Uniformity and disorder in the fabricated photonic crystal lattice are analyzed with the 

method described in Ref. [S1]. The edge detection algorithm employed to examine the image 

disorder quantification involves categorizing the image into holes and the substrate region. First, 

we normalize the image pixel to be distributed between 0 and 1. Then, each pixel of the image is 

compared to an optimum threshold parameter, which is chosen based on the histogram of the 

pixel value of the image. Figure S1 shows one example high-resolution SEM image containing a 

sample photonic crystal lattice of 56 holes. A threshold value of 0.3 is chosen, and the fitted hole 

centers and edge shapes are shown in the white dots and curves respectively. The hole radii are 

found to have a mean percent error of 3.26% and the root mean square (RMS) fit error of an edge 

from a perfect circle is computed statistically to be approximately 3.5 nm. The RMS of the hole 

center deviations from a perfect lattice along the two principal directions (Figure S1) are σx = 7.7 
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nm and σy = 2.7 nm respectively. To study the roughness of features in the photonic crystal 

lattice, a fractal methodology was employed and the correlation length of 16.8 nm was computed 

using the parameterization of the “height-to-height” correlation function. 

 

S.II. Spectral function of the disordered waveguide 

We consider a nearest-neighbor tight-binding Hamiltonian that describes photon 

propagation in an effectively one-dimensional waveguide 
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Here ax
+ and ax denote, respectively, the bosonic (photon) creation and annihilation operators at 

lattice site x and J denotes the corresponding hopping element. M is the number of lattice sites, 

and x is the site energy. When measuring energies from the center of the band, the 

corresponding dispersion relation is 2 cos( )k J ka    and we choose lattice constant a = 1 in 

our simulation without the loss the generality. To illustrate localized modes in the disordered 

 
 

Figure S1 | Statistical geometrical imperfections analysis of the fabricated photonic 

crystal lattice. Vertices of a fitted periodic underlying lattice are shown as white dots, and 

edge boundaries of the fitted air holes are shown as white circles. 
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waveguide, we examine spectral functions (imaginary part of retarded Green’s function) at 

different wavevectors k for a one-dimensional waveguide with 750 lattice sites. Disorder is 

introduced by taking the {x} uniformly random distributed over the interval [-W/2, W/2] [S2]. 

 

We note that disorder strengths W (also coupling strengths V and transition energies  in 

section S.III) have the unit of energy as x  and J, and their magnitude are normalized with 

respect to J. We also implement a Gaussian spatial filter to examine optical modes localized 

within a certain spatial region, which matches the case in the experiment where a 

photoluminescence signal from a 1 to 2 µm spot is collected by the objective lens. Figure S2(a) 

shows the spectral functions of a disordered waveguide with disorder strength W = 0.5 from mid-

band to band edge. Disorder leads to a smearing of the dispersion relation which is most 

prominent close to the band edges. As the disorder increases to W = 3.0 (Figure S2(b)), the 
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Figure S2 | Spectral function of the disordered 1D waveguide described by the tight-

binding chain model. a, For a disorder strength W of 0.5. b, For a disorder strength W of 3.0. 

Band structure of an ideal structure is plotted in white solid line. c, Wavefunction (dot) and the 

exponential fit (curve) of an example localized mode in real space for (top) W = 3.0 and 

(bottom) W = 0.5. 
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localized modes get more pronounced and even the van Hove singularity at the band edges 

disappears. We note that for the particular disorder configuration in Figure S2(a-b), the Gaussian 

spatial filter is chosen at position xD = 490 with width  = 25 where the fourth mode of the W = 

0.5 waveguide, the sixth mode of the W = 0.8 waveguide, and the twentieth mode of the W = 3.0 

waveguide can be covered by our spatial filter simultaneously. Figure S2(c) shows the shape of 

the wave function of one example localized mode in real space for W = 0.5 and W = 3.0. Very 

short localization lengths can be achieved when disorder strengths get larger as shown from the 

exponential fitting curves in Figure S2(c).  

 

S.III. Spectral function of the disordered waveguide with a quantum emitter
 

We extend the model to include the coupling to a quantum emitter [S3-S4]: 
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The quantum emitter is modeled as a two-level system (described by Pauli operators) with 

transition frequency /ħ that is located at lattice site xo and couples with a coupling element V to 

the modes of the photonic band. Figure S3(a-b) examine the spectral function for a quantum 

emitter with transition energy  = -2.05532 at position xo = 488 interacting with the fourth 

eigenmode for W = 0.4, and the spectral function for a quantum emitter with transition energy  

= -2.67054 at position xo = 330 interacting with the third eigenmode for W = 3.0. We observe 

mode degeneracy at small V and Rabi splitting when V is at least comparable to the linewidth. 

The theoretically observed normal mode spectral splitting in the simulations verify the possibility 

of the experimentally observed strong coupling regime between a quantum emitter and localized 

modes in one-dimensional disordered waveguides, even in the presence of a continuum of 
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modes. Deviating from the canonical Jaynes-Cummings ladder, this scenario can perhaps be 

finely described with that of modified spontaneous emission and polariton states in a Fano-like 

density of states. 

 

Supplementary References:  

[S1] Skorobogatiy M. & Begin, G. Statistical analysis of geometrical imperfections from the 

images of 2D photonic crystals. Optics Express 13, 2487 – 2502 (2005). 

[S2] Schmitteckert, P., Schulze, T., Schuster, C., Schwab, P. & Eckern, U. Anderson localization 

versus delocalization of interacting fermions in one dimension. Phys. Rev. Lett. 80, 560 – 563 

(1998). 

 

Figure S3 | Spectral function of a disordered waveguide coupled to a quantum 

emitter. a, The quantum emitter couples on resonance to one localized mode in 

disordered waveguide (W = 0.4) via coupling strengths of V = 0.001, 0.01, 0.02, 0.04, 

0.06 and 0.1 respectively. b, The quantum emitter couples on resonance to one localized 

mode in disordered waveguide (W = 3.0) via coupling strengths of V = 0.0001, 0.001, 

0.01, 0.02, 0.05, 0.1 and 0.2 respectively. 
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