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Photonic realization of topologically protected bound states in domain-wall waveguide arrays
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We present an analytical theory of topologically protected photonic states for the two-dimensional Maxwell
equations for a class of continuous periodic dielectric structures, modulated by a domain wall. We further
numerically confirm the applicability of this theory for three-dimensional structures.
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I. INTRODUCTION

Due to their role as vehicles for localization and transport
of energy, surface modes have long been recognized to be
of central importance [1,2]. A striking example is that of
topologically protected edge states, which were first studied
in the quantum Hall effect in condensed matter physics [3–5].
Since 2005, there has been intense focus on the protected
states of topological insulators [6,7]. More recently, there
has also been growing interest in photonic analogues of the
topologically protected states observed in electronic systems
[8–10]. In particular, such states have been shown to arise
via line defects (edges) and time-reversal or spatial-inversion
symmetry breaking in linear and nonlinear photonics, e.g.,
[8,9,11–17].

Theoretical arguments for the existence and robustness of
topologically protected edge states have been given in terms
of topological invariants associated with the band structure,
e.g., the Chern index or Zak phase backed by numerical
simulations. A systematic justification of the applicability of
such invariants, however, appears only to have been provided
in tight-binding models, e.g., [18–21]. In the photonic setting,
this corresponds to the limit of infinite medium contrast.
We seek a general understanding of topological protection,
namely a theory which is applicable outside of limiting
regimes, such as the tight-binding or nearly-free-photon
approximations. Indeed, many physical settings of interest,
including photonics in low contrast periodic structures, fall
outside these regimes; see also [13].

In [22,23], a class of one-dimensional (1D) continuous
systems described by the Schrödinger equation with a domain-
wall modulated (DWM) periodic potential were proved to
have topologically protected bound states, originating in the
zero-mode of an effective 1D Dirac equation, a mechanism
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which plays a role in [8,24]; see also [25]. In this paper, we
propose and investigate a photonic realization of these states
as topologically protected guided wave modes in a class of
coupled two-dimensional (2D) waveguide arrays governed by
Maxwell’s equations. No tight-binding or nearly-free-photon
assumptions are made; the results hold for bulk structures of
arbitrary material contrast.

We further demonstrate, through ab initio numerical simu-
lations for the full three-dimensional (3D) Maxwell equations,
that these waveguide modes and their properties persist for
physically realistic 3D optical waveguide arrays. In particular,
robustness against geometric and intrinsic background thermal
perturbations is demonstrated. These states have fundamen-
tally linear dispersion and broadband flat group velocity
dispersion.

Photonic waveguide array structures are an important
class of photonic crystals, providing a natural platform for
basic studies of topological insulators and their photonic
applications. They permit qualitative study and quantitative
measurements of many phenomena [26,27]. Recent work has
explored 2D arrays in linear and nonlinear regimes, in both
deterministic and random media [28–34].

II. SCHRÖDINGER SETTING

A. Guided TM Maxwell modes as eigenmodes of
the Schrödinger equation

The propagation of light in space, with coordinates (x,y,z),
in a dielectric medium with constant permeability and per-
mittivity depending on only one variable ε(x) is governed by
Maxwell’s equations. Time-harmonic modes, which propagate
in the z-waveguided direction are of transverse-electric (TE)
(E1,H,E2) or transverse-magnetic (TM) (H1,E,H2) type. We
focus on the TM case; an analogous discussion holds for TE
modes.

TM modes with frequency ω, which are localized in the
transverse x direction, are of the form

E(x,z,t) = eiωt e±i
√−μ ω

c
z�

(
ω

c
x

)
, (1)

where (μ,�(x ′)) is a solution of the Schrödinger eigen-
value problem (EVP) with potential −ε( c

ω
x ′) and energy
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μ = − c2

ω2 k
2
z :

(
− ∂2

∂x ′2 − ε

(
c

ω
x ′

))
�(x ′) = μ�(x ′), � ∈ L2(R). (2)

Here, ε(x ′) denotes the guided mode effective permittivity
as a function of the dimensionless transverse distance x ′ =
ω
c
x, kz is the z-propagation constant, and c is the vacuum

speed of light. If (μ,�) is an eigenpair of (2) for which k2
z =

−(ω/c)2μ > 0, then kz is real and (1) is a guided TM mode,
propagating in z and localized in x.

B. Topologically protected bound states

In [22,23], the authors study topologically protected
bound states in 1D domain-wall modulated (DWM)
Schrödinger Hamiltonians of the form: Hδ = −∂2

x + Ve(x) +
δκ(δx)Wo(x), where Ve and Wo denote even-index and odd-
index cosine series, respectively; and κ(X) is a so-called
domain-wall function that satisfies κ(X) → ±κ∞, X → ±∞,
with κ∞ > 0. Hδ interpolates between dimer structures at x =
±∞. For δ = 0, H 0 has distinguished quasimomentum-energy
pairs where its dispersion curves cross linearly; see Fig. 1(a).

Theorem 1 ([22,23]). The Floquet-Bloch EVPs
for H 0 = −∂2

x + Ve(x): H 0�(x; kx) = E�(x; kx),
�(x + 1; kx) = eikx �(x; kx), parametrized by kx ∈ [0,2π ],
possess Dirac points. These are pairs (kx,
 = π,E
)

FIG. 1. Spectra of Hδ = −∂2
x + Ve(x) + δκ(δx)Wo(x). (a) δ = 0.

First four dispersion curves kx �→ Eb(kx) (gray) and continuous
spectrum (black) of H 0 = −∂2

x + Ve(x). Dirac points at kx,
 = π ,
E
 ≈ π 2,(3π )2. (b) Spectra of Hδ with κ(X) = tanh(X). Defect mode
energy Eδ (red dot) lies in the spectral gap about E
 = π 2. (c) For a
range of δ > 0, continuous spectrum (black) of Hδ with domain-wall
function κ(X) = 5 tanh(X) + 10e−X2

. Red curves are topologically
protected bifurcations, seeded by effective Dirac equations. Blue
curves are (nonprotected) band-edge bifurcations, seeded by effective
Schrödinger equations. (d) Spectrum of hδ = Hδ + δ2G(δx), with
G(X) = 3e−X2

and κ(X) as in (c). Bifurcations from Dirac points
(red) persist while those from band edges (blue) may be destroyed
when subjected to localized perturbations.

with mappings kx �→ (E±(kx),�±(x; kx)) such that
the dispersion locus near (kx,
,E
) is given by
E±(k) − E
 = ±λ�(k − kx,
) + O((kx − kx,
)2). Here, λ� =
2i〈�1,∂x�2〉L2([0,1]) �= 0 is the “Fermi velocity.”

Associated with each Dirac point of the periodic (unmod-
ulated) Hamiltonian H 0, there is a topologically protected
branch of bound states of the Schrödinger EVP for the DWM
Hamiltonian Hδ .

Theorem 2 ([22,23]). Let (kx,
 = π,E
) denote a Dirac
point of H 0 = −∂2

x + Ve(x). Assume the (generically sat-
isfied) nondegeneracy condition: λ� × ϑ� �= 0, where λ� =
2i〈�1,∂x�2〉L2([0,1]) and ϑ� = 〈�1,Wo�2〉L2([0,1]).

(1) There exists, for small δ, a family of exponentially
localized eigensolutions δ �→ (Eδ,�δ) of the EVP: Hδ�δ =
Eδ�δ, �δ ∈ L2(R), bifurcating from energy E
 at δ = 0.

(2) �δ(x) is well approximated by a slowly varying and
spatially decaying modulation of the degenerate modes �1 and
�2: �δ(x) ≈ α
,1(δx)�1(x) + α
,2(δx)�1(x). The amplitude
vector α
 = (α
,1,α
,2) is a zero mode of a 1D Dirac operator:
D ≡ iλ�σ3∂X + ϑ�κ(X)σ1, where σ1 and σ3 are the standard
Pauli matrices.

(3) This zero-energy state of D persists for arbitrary
spatially localized perturbations of the domain wall κ(X), and
hence the bifurcation is topologically protected.

Figures 1(b) and 1(c) illustrate aspects of Theorem 2 for
a range of δ values. In particular, the first branch of midgap
eigenmodes (red) bifurcates into Iδ ≡ (E
 − δ|κ∞ϑ�|,E
 +
δ|κ∞ϑ�|).

C. Protected vs nonprotected modes

To contrast the protected modes of DWM structures
with conventional nonprotected modes of periodic structures
with defects which arise via bifurcations from a band-
edge energy Eb(kedge), consider the Hamiltonian hδ = −∂2

x +
Ve(x) + δκ(δx)Wo(x) + δ2G(δx), which incorporates both a
domain-wall induced phase defect [δκ(δx)Wo(x)] and a
localized defect [δ2G(δx)]; scalings are chosen so that both
effects are of comparable size. Band-edge bifurcations are
seeded by bound states of the effective Schrödinger opera-
tor: hb,eff = −(2mb,eff)−1∂2

X + Qb,eff(X), with effective mass
[35] m−1

b,eff = E′′
b (kedge) and effective potential Qb,eff(X) =

cb [κ2
∞ − κ2(X)] + G(X), cb > 0. While the zero-energy

eigenstate of D, which induces the bifurcation of bound states
from a Dirac point [2], persists under arbitrary (even large)
localized perturbations of the domain wall κ(X), the localized
states of hb,eff , and therefore their induced branch of bound
states [1], are not stable to arbitrary localized perturbations
G(X) [36,37].

In Fig. 1(c), where G ≡ 0, the domain wall induces
bifurcations from Dirac points as well as from band edges. In
Fig. 1(d), a nonzero localized perturbation G(X) has destroyed
the lower band edge bifurcation; the edge bifurcation can be
removed by smooth deformation of hδ while the Dirac point
bifurcation is topologically protected.

The protected states of DWM structures also exhibit a
remarkable robustness of their eigenvalues (operating or work-
ing frequencies) when compared with those of conventional
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FIG. 2. Greater robustness of the operating frequency of pro-
tected modes when compared with conventional nonprotected modes,
illustrated by the spectra of hδ

γ = −∂2
x + Ve(x) + δκ(γ δx)Wo(x) +

δ2G(γ δx) near the first spectral gap. (a) Protected mode; G ≡ 0 and
κ(X) = tanh(X). (b) Nonprotected mode; κ ≡ 1 and G(X) = 3e−X2

.

structures with localized defects. To illustrate this, we extend
the previous model to a Hamiltonian hδ

γ = −∂2
x + Ve(x) +

δκ(γ δx)Wo(x) + δ2G(γ δx), with defect mode eigenvalue E
γ

δ ,
where changing γ varies the phase defect’s transition region
width (where κ transitions between positive to negative values)
and the area of the localized defect G. The potential in hδ

γ is
assumed to be smooth. For γ ≈ 1 and 0 < δ � 1, Eγ

δ − E
γ=1
δ

is of the order (�E)κ = (γ − 1)δ
∫

(δx)κ ′(δx)Wo(x)|�δ
κ |2dx

for the protected mode (DWM κ , G ≡ 0), and of the order
(�E)G = (γ − 1)δ2

∫
(δx)G′(δx)|�δ

G|2dx for the nonpro-
tected mode (κ ≡ 1, localized G �= 0).

For δ � 1, we have �δ
κ,�

δ
G ≈ δ

1
2 e−c|δx|, c > 0; see

Theorem 2 and [22,37]. Therefore, using the rapid oscillations
of Wo(y/δ), we have (�E)κ ≈ (γ − 1)

∫
F (y)Wo(y/δ)dy =

O((γ − 1)δM ), for all M ∈ Z+ where F (y) = yκ ′(y)e−2|y|.
On the other hand, a direct computation gives (�E)G =
O((γ − 1)δ). Hence, for small δ and γ ≈ 1, we have
|(�E)κ | � |(�E)G|. Numerical simulations for larger δ and
|γ − 1| further corroborate the strong robustness of the
operating frequency of topologically protected modes; see
Fig. 2.

III. MAXWELL SETTING

A. 2D topologically protected, guided TM modes

Returning to the Maxwell setting, Theorem 2 and (1) imply:

Corollary 1. Maxwell’s equations exhibit topologically
protected, transversely localized, guided TM modes.

We realize these topologically robust TM modes in a pho-
tonic waveguide array by constructing a coupled 2D silicon-air
waveguide array profile εδ(x) corresponding to a potential
Uδ(x). We construct Uδ(x) to be the two-valued approximation
of a choice of Ve(x) + δκ(δx)Wo(x), scaled to match the
effective permittivities of silicon (12.1) and air (1). Uδ=1(x)
is the DWM structure and Uδ=0(x) is the periodic potential
having Dirac points. Finally, we set εδ( c

ω
x) = −Uδ(x); see (2).

The 2D DWM waveguide array is shown in Fig. 3(b). Although
the relative length scale between Uδ(x) and εδ(x) is important,

FIG. 3. 2D Maxwell problem. (a) Periodic (δ = 0) 2D silicon-air
waveguide array with lattice constant (period) a. (b) DWM (δ = 1) 2D
silicon-air array. Left and right asymptotic 2a-periodic structures are
phase shifted relative to one another. Modulated structures consisting
of five waveguide channels (three shown here) on either side of
the defect region were used for numerical computations. (c) TM
dispersion curves ω(kx) (gray) and frequency spectra (black) of the
first few TM bands of the periodic 2D waveguide array (δ = 0),
with kz = 2π/10 fixed. Linear band crossings (Dirac points) occur
at kx = π/a. (d) For the 2D DWM waveguide array (δ = 1), bound
state energies (red dot) bifurcate into spectral gaps about Dirac points
of the periodic (unmodulated) structure. (e) Dispersion curves ω(kz)
of the first few TM bands for the 2D DWM waveguide. Eigenvalue
curves (red), corresponding to guided modes, lie in between bands of
continuous spectrum (black).

the computations may be carried out at arbitrary length scales
due to the scale invariance of Maxwell’s equations [12].

Since the numerically computed lowest energy gap mode
of the Schrödinger equation with the DWM potential Uδ=1(x)
satisfies μ < 0, kz = ±(ω/c)

√−μ is real and the correspond-
ing TM mode in (1) is guided.

The dispersion curves kx �→ ω(kx) for TM modes of the
2D periodic (unmodulated) structure εδ=0(x) are displayed
in Fig. 3(c). These curves are computed by solving the
2D Maxwell equations for ω at discrete kx values, using
MPB [38]. The dispersion curves kz �→ ω(kz) for the DWM
waveguide εδ=1(x) are displayed in Fig. 3(e). In analogy with
the Schrödinger setting, robust guided modes are observed in
gaps about Dirac points at quasimomentum kx = π/a, where
a is the lattice constant; see Figs. 1(a) and 1(b). Qualitatively
similar dispersion curves are observed for TE modes.

We numerically study on-axis z propagation in the
DWM 2D waveguide of a Gaussian wave-packet,
using the approximate paraxial Schrödinger equation
[39,40]. For the periodic array, the energy of the launched
packet quickly delocalizes [Fig. 4(a)]. In contrast, in the
DWM structure, a topologically protected mode is excited and
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FIG. 4. On-axis z propagation of electric field E(x,z) through
(a) periodic and (b) DWM 2D waveguide arrays.

confines most of the energy on-axis [Fig. 4(b)]. A quantitative
comparison of localization properties of the DWM and
periodic structures is obtained by measuring ξ , the fraction of
power remaining within (roughly) the width of the profile of the
stationary localized mode of the DWM structure at z = 50a:
ξ = ‖E(x,z = 50a)‖2

L2([−5a,5a])/‖E(x,z = 0)‖2
L2([−30a,30a]).

The DWM structure achieves significantly more localization:
ξDWM = 0.92 and ξperiodic = 0.35.

B. 3D topologically protected, guided TM modes

The theory summarized in Theorem 2 and Corollary 1
is exact and rigorous for a 2D waveguide with effective
permittivity satisfying ε = ε(x). The physical 3D DWM
waveguide is a finite height y truncation of the 2D structure.
Numerical simulations (below) show a long lived 3D state,
localized in the x direction even for small height truncations.
A schematic of a 3D silicon waveguide (effective permittivity
12.1) with height 0.25a and silicon-dioxide cladding (effective
permittivity 2.085) is shown in Fig. 5(b).

Numerically computed dispersion curves: kz �→ ω(kz), for
TM modes of the 3D DWM waveguide, are displayed
in Fig. 5(e). From ω(kz), we compute the group velocity
dispersion (GVD), ∂2kz/∂ω2; see figure inset.

Corollary 1 ensures that the 2D TM modes, which bifurcate
from Dirac points, are topologically stable. We confirm the
existence and persistence of their 3D counterparts through a
computational study of two classes of physical perturbations:
(i) changes in the effective permittivity due to thermal
fluctuations; and (ii) geometric perturbations in the lattice
constants (waveguide channels) of the array due to fabrication
imperfections, both 10% perturbations, randomly sampled
from a uniform distribution. Figure 5(d) (solid) displays the
mean deviation of the GVD curves of perturbed waveguides
relative to the unperturbed (DWM) waveguide, calculated
from 100 independent simulations. Also plotted (dotted),

FIG. 5. 3D Maxwell problem. (a) Periodic (δ = 0) 3D silicon
waveguide with lattice constant (x-direction period) a and height (y
direction) 0.25a, and silicon dioxide cladding (not shown). Height
exaggerated for clarity. (b) DWM (δ = 1) 3D silicon waveguide
with height 0.25a, and silicon dioxide cladding. Computations were
carried out on DWM structures with five waveguide channels on either
side of the defect region. (c) Electric field |E|2 of the localized mode
with ω = 4.0c/a and kz = 8.3/a [blue square in (e)], over a fixed z

slice of the DWM waveguide. (d) Mean relative deviation of GVD vs
wavelength λ, of the DWM (solid curves) and regular channel (dotted
curves) waveguides when subjected to thermal (purple) and geometric
(cyan) perturbations. (e) Dispersion curves ω(kz) of the first few TM
bands of the (unperturbed) 3D DWM waveguide. Inset shows the
associated GVD of lower frequency protected guided modes.

for reference, are the corresponding mean relative deviation
of the GVD curves for a regular channel silicon-silicon
dioxide waveguide (of height 0.25a and channel width 0.45a).
GVD robustness of topologically protected DWM guided
modes, with respect to thermal and geometric perturbations,
is comparable to that for regular channel modes.

Fixing ω = 4.0c/a , we also observe that the mode itself
remains localized against the perturbations, as measured by
the perturbed effective mode area statistics [41]: Athermal =
0.92 ± 0.09 and Ageometric = 0.9 ± 0.4. Here the perturbed
mode areas are normalized against the unperturbed mode area,
and reported as means with corresponding standard deviations,
calculated from 50 independent simulations.

IV. CONCLUSION

Summarizing, building upon the theory of [22,23], we
have demonstrated the bifurcation of highly robust guided
TM modes for Maxwell’s equations governing a class of

033822-4



PHOTONIC REALIZATION OF TOPOLOGICALLY . . . PHYSICAL REVIEW A 93, 033822 (2016)

domain-wall modulated photonic waveguide arrays in two
dimensions. Our findings are corroborated by full Maxwell
simulations of physically realistic 3D structures, derived from
our 2D model. In contrast to the guided wave modes of conven-
tional waveguides, domain-wall modulated modes are robust
to large localized perturbations while having comparable
GVD robustness characteristics. These topologically protected
states may be well suited for chip-scale nanofabrication of
semiconductor waveguides for communications and frequency
source generation.
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