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I. Si3N4 ring resonator structure, refractive index and quality factor characterization 

Figure S1a shows the layout of the ring resonator and the refractive index of the low 

pressure chemical vapor deposition (LPCVD) Si3N4. Due to the large refractive index of the 

Si3N4 waveguide, a 600 µm long adiabatic mode converter (the Si3N4 waveguide, embedded in 

the 5ൈ5 µm2 SiO2 waveguide, has gradually changing widths from 0.2 µm to 1 µm) is 

implemented to improve the coupling efficiency from the free space to the bus waveguide. The 

input-output insertion loss for the waveguide does not exceed 6 dB. The refractive index was 

measured with an ellipsometric spectroscopy (Woollam M-2000 ellipsometer) and the red curve 

is the fitted Sellmeier equation assuming a single absorption resonance in the ultraviolet (Figure 

S1b). The fitted Sellmeier equation, ݊ሺߣሻ ൌ ට1 
ሺଶ.ଽହേ.ଵଽଶሻఒమ

ఒమିሺଵସହ.ହേଵ.ଷଽସሻమ
, was then imported into 

the COMSOL Multiphysics for the waveguide dispersion simulation, which includes both the 

material dispersion and the geometric dispersion. 
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The fabrication procedure of our microresonator: First a 3 μm thick SiO2 layer was 

deposited via plasma-enhanced chemical vapor deposition on p-type 8” silicon wafers to serve as 

the under-cladding oxide. Then LPCVD was used to deposit a 725 nm silicon nitride for the ring 

resonators, with a gas mixture of SiH2Cl2 and NH3. The resulting Si3N4 layer was patterned by 

optimized 248 nm deep-ultraviolet lithography and etched down to the buried SiO2 via optimized 

reactive ion dry etching. The sidewalls were observed under SEM for an etch verticality of 88 

degrees. The nitride rings were then over-cladded with a 3 μm thick SiO2 layer, deposited 

initially with LPCVD (500 nm) and then with plasma-enhanced chemical vapor deposition (2500 

nm). The device used in this study has a ring radius of 200 µm, a ring width of 2 µm, and a ring 

height of 0.725 µm. 

Figure S2 shows the wavelength-dependent Q-factors of the ring resonator, determined by 

Lorentzian fitting of cavity resonances. The loaded Q reaches its maximum (~1.4M) at 1625 nm 

and gradually decreases on both ends due to the residual N-H absorption at the short wavelengths 

and the increasing coupling loss at the long wavelengths. This effective bandpass filter plays an 

important role in pulse generation from our normal GVD microresonator. 

 

Figure S1 | Scanning electron micrograph of the chip-scale ring resonator. a, Layout of the 

ring resonator with input/output mode converters with less than 3 dB coupling loss on each facet.  

Scale bar: 50 µm. b, Spectroscopic ellipsometer measurements of the refractive index of the 

LPCVD Si3N4for the numerical dispersion modeling. 

II. Dispersion measurement and mode interaction 

Figure S3 shows the dispersions of the ring resonator calculated with a commercial full-

vector finite-element-mode solver (COMSOL Multiphysics), taking into account both the 

waveguide dimensions and the material dispersion. Modeling is performed on 50 nm triangular 

spatial grid with perfectly-matched layer absorbing boundaries and 5 pm spectral resolution.  

Since the ring radius is large, the bending loss and the bending dispersion of the resonator 
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waveguide are negligible in our ring resonators [S1]. The fundamental mode (TE11) features 

small normal group velocity dispersion (GVD) and small third-order dispersion (TOD) across the 

whole telecommunication wavelength range while the first higher order mode (TE21) possesses 

large anomalous GVD and large TOD. We define GVD and TOD in accordance with formulas 

ܦܸܩ ≡ డమఝ
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Figure S2 | Q quantification of the resonant modes. The intrinsic absorption from the residual 

N-H bonds results in the loaded Qs’ roll-off at the short wavelengths (circles). Post-annealing of 

the Si3N4 ring resonator lowers the concentration of the residual N-H and reduces the roll-off 

(triangles). At the long wavelengths, the increasing coupling loss is responsible for the Q roll-off. 

The red curve is the fit of the loaded Qs, used in the numerical simulations. 

 

Figure S3 | Simulated GVD and TOD of the ring resonator. The fundamental mode features 

normal GVD across the whole telecommunication wavelength range while the first higher order 
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mode possesses anomalous GVD. The fundamental mode also features small TOD at the 

telecommunication wavelength range, beneficial for broad comb generation. 

 

Figure S4 | Dispersion measurement setup. The laser is swept through its full wavelength 

range at 40 nm/s tuning range and the absolute wavelength is calibrated with a hydrogen cyanide 

gas cell. The sampling clock of the data acquisition is derived from the photodetector monitoring 

the laser transmission through a fiber Mach-Zehnder interferometer with 40 m unbalanced path 

lengths, which translates to a 5 MHz optical frequency sampling resolution. 51 absorption 

features of the gas cell are correlated with the wavelength sweep to determine the subsample 

positions. 

Figure S4 shows the schematic diagram of the dispersion measurement setup. The 

microresonator transmission, from which quality factor and FSR values are determined, was 

measured using a tunable laser swept through its full wavelength tuning range at a tuning rate of 

40 nm/s. For absolute wavelength calibration, 1% of the laser output was directed into a fiber 

coupled hydrogen cyanide gas cell (HCN-13-100, Wavelength References Inc.) and then into a 

photodetector (PDGascell). The microresonator and gas cell transmission were recorded during the 

laser sweep by a data acquisition system whose sample clock was derived from a photodetector 

(PDMZI) monitoring the laser transmission through an unbalanced fiber Mach-Zehnder 

Interferometer (MZI). The MZI has a path length difference of approximately 40 m, making the 

measurement optical frequency sampling resolution 5 MHz. The absolute wavelength of each 

sweep was determined by fitting 51 absorption features present in the gas cell transmission to 

determine their subsample position, assigning them known traceable wavelengths [S2] and 
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calculating a linear fit in order to determine the full sweep wavelength information. Each 

resonance was fitted with a Lorentzian lineshape unless a cluster of resonances were deemed too 

close to achieve a conclusive fit with a single Lorentzian. Then, an N-Lorentzian fit was utilized 

where N is the number of resonances being fitted. The dispersion of the ring resonator was then 

determined by analyzing the wavelength dependence of the FSR. 

To compare the dispersion measurements with the COMSOL calculations, we performed 

two other measurements beside the one shown in Figure 1b. Figure S5a and S5b show the 

measured dispersions of the TE21 mode of the microresonator used in this paper (a ring width of 

2 µm) and the TE11 mode of the microresonator with a different ring width of 1.55 µm, 

respectively. Both measurements show good agreements with the COMSOL calculations (Dmea = 

2.2 MHz versus Dsim = 2.4 MHz, and Dmea = 330 kHz v.s. Dsim = 500 kHz). The good agreements 

give us confidence in the COMSOL calculations, and thus we use the calculated dispersions in 

the Kerr comb numerical simulation for the wavelength range not covered by the dispersion 

measurements (due to the unavailability of the suitable tunable laser). 

It has been shown that the resonance shift due to the temperature drift is the major cause in 

the uncertainty of the dispersion measurements [S3]. In our measurement setup, we actively 

control both the ambient and the on-chip temperature and the temperature drift in 2 second is 

measured to be less than 5 mK. Such a temperature drift will lead to a resonance shift that can be 

calculated by 
∆జ

జబ
ൌ െቀߙ  ଵ



ௗ

ௗ்
ቁ ∆ܶ, where the thermal expansion coefficient ߙ ൌ 3.3 ൈ 10ି/ܭ 

and the thermo-optic coefficient 
ௗ

ௗ்
ൌ 2.45 ൈ 10ିହ/ܭ [S4, S5]. Thus the uncertainty of our 

dispersion measurement setup, limited by the temperature induced resonance shift, is estimated 

to be less than 175 kHz/mode. Experimentally, we observe measurement errors of less than  70 

kHz/mode, in good agreement with the estimation. For each measurement, four dataset are taken 

and independently fit to find the dispersion. The reported Ds are the average values and the 

measurement errors are the standard deviations of the four dataset. Furthermore, we also confirm 

the temperature drift has minimal effect when the wavelength scan speed is set higher than 20 

nm/s (Figure S5c). 

Of note, the non-equidistance of the modes in our ring resonator can be estimated as 

ଶܦ ൌ െ270	݇ݖܪ. Compared to the resonance linewidth, 2ߛ ൌ  the non-equidistance ,ݖܪܯ	180

is insignificant and thus comb spacing alterations due to mode interaction are pronounced in our 
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ring resonator [S6]. The frequency shift ∆ of mode a due to interaction with mode b can be 

estimated using the formula ∆ൌ െమ

∆
, where ߢ is the interaction constant and Δis the difference 

in eigenfrequencies of the interacting modes (a and b) [S6]. Even with an assumption of large Δ 

of 10 GHz, a small mode interaction constant	ߢ ൌ   can change the local dispersion fromߛ0.6

normal dispersion to anomalous dispersion.  Similar effect was also observed and characterized 

in Ref.  [S7]. 

Figure S6 plots the resonance frequency offsets with respect to the fundamental mode family 

(top) as well as the wavelength-dependent FSRs of the fundamental mode family (bottom). The 

zero crossings on the upper panel represent the wavelengths where the fundamental mode family 

experiences mode crossings with other higher order mode families. The lower panel then shows 

that the disruption of the dispersion continuity of the fundamental mode family is dominated by 

the mode interaction with the first higher order TE mode family. 

 

 

Figure S5 | Measured dispersions. (a) Wavelength dependence of the FSR, measuring a non-

equidistance of the modes, D, of 2.2 MHz, in a good agreement with the COMSOL simulations, 

D = 2.4 MHz. (b) Wavelength dependence of the FSR, measuring a non-equidistance of the 

modes, D, of 330 kHz, in a good agreement with the COMSOL simulations, D = 500 kHz. (c) 

Dispersion measured at different wavelength scan speeds, showing the minimal effect of the 

temperature drift when the wavelength scan speed is set higher than 20 nm/s. 
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Figure S6 | Frequency offset and FSR of the modal families. Upper panel: The resonance 

frequency offsets with respect to the fundamental mode family. Lower panel: Wavelength-

dependent FSRs of the fundamental mode family. 

III. Kerr comb and ultrashort pulse characterization 

Hyper-parametric oscillation in an anomalous dispersion microresonator starts from the 

modulation instability of the intra-cavity cw light. When the intra-cavity power exceeds a certain 

threshold, the cw field becomes modulated and the modes of the resonator that is phase matched 

start to grow. Since most materials possess positive Kerr nonlinearities, anomalous GVD is tuned 

in prior resonators to satisfy the phase matching condition. Increase of the optical power can 

result in soliton formation, leading to the generation of a broad frequency comb and short pulses. 

Hyper-parametric oscillation as well as Kerr comb formation is also possible in the case of 

normal GVD, but a non-zero initial condition is required for frequency comb and pulse 

generation [S8]. In our microresonator, the comb can be ignited due to the change of local GVD 

resulting from the mode interaction between the fundamental mode family, which has a normal 

GVD, and the first higher order mode family, which has an anomalous GVD (see Figures 1b). 

Mode interaction enables excitation of the hyper-parametric oscillation from zero initial 

conditions. It is possible then to introduce a non-adiabatic change to the system parameters and 

transfer the system from the hyper-parametric oscillation regime to the frequency comb 

generation regime [S8]. Here a non-adiabatic change means a stepwise change of resonance 
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detuning or pump power, instead of a continuous scan, in a time shorter than the time of the 

comb growth, which is much longer compared to the cavity lifetime [S8, S9]. 

 

Figure S7 | Comb characterization and FROG measurement setup. PC, polarization 

controller; PFC, pigtailed fiber coupler; PBS, polarization beamsplitter; AL, aspheric lens; MR, 

micro-resonator; FM, flip mirror; OSA, optical spectrum analyzer; BPF, bandpass filter; RSA, 

RF spectrum analyzer; BS, beamsplitter; DS, delay stage; AC, achromatic lens; HSGS, high-

sensitivity grating spectrometer; BBO, β-barium borate. BBO is chosen to be the second-

harmonic generation crystal because it has been shown to exhibit ultrabroad phase matching 

bandwidth at the telecommunication wavelengths [S10, S11].  

Figure S7 shows the schematic diagram of the comb and pulse generation and 

characterization setup. The cw pump started from an external cavity stabilized tunable laser 

(Santec TSL-510C). The linewidth of the laser is 200 kHz and the frequency stability over an 

hour is <120MHz. The pump power was increased from 8dBm to 29 dBm in an L-band EDFA 

(Manlight HWT-EDFA-B-SC-L30-FC/APC). A 3-paddle fiber polarization controller and a 

polarization beam splitter cube were used to ensure the proper coupling of TE polarization into 

the microresonator. The total fiber-chip-fiber loss is 6 dB. The microresonator chip was mounted 

on a temperature controlled stage set to 60oC. The temperature stability over an hour is <0.1oC so 

that the change in coupling loss is negligible (<0.5%). The output light was sent to an optical 

spectrum analyzer (Advantest Q8384) and a photodiode (Thorlabs DET01CFC) connected to an 

RF spectrum analyzer (Agilent E4440A) for monitoring of comb spectrum and RF amplitude 
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noise, respectively.  For the RF amplitude noise measurement, a 10 nm portion of the optical 

spectrum (1560 nm to 1570 nm) was filtered from the comb.  The output light can also be sent by 

a flip mirror to the FROG setup for pulse characterization. The FROG apparatus consists of a 

lab-built interferometer with a 1 mm thick β-BBO crystal and a high-sensitivity grating 

spectrometer with a cryogenically-cooled deep-depletion 1024ൈ256 Si CCD array (Horiba Jobin 

Yvon CCD-1024256-BIDD-1LS).  The FROG setup is configured in a non-collinear geometry 

and careful checks were done before measurements to ensure only background-free SH signals 

were collected.  The use of dispersive optics is minimized and no fiber is used in the FROG 

apparatus such that the additional dispersion introduced to the pulse is only -50 fs2. The FROG 

can detect pulses with a bandwidth of >200 nm [S10, S11] and a pulse energy of <100 aJ (10 μW 

average power) with a 1 second exposure time. With the sensitive FROG, no additional optical 

bandpass filtering and amplification is needed (minimizing pulse distortion), though there is a 

small amount of dispersive filtering and intensity modification with the coupling optics and ring-

waveguide coupling. The FROG reconstruction was done iteratively using genetic 

algorithm [S12]. Genetic algorithm is a global search method based on ideas taken from 

evolution and is less susceptible to becoming trapped by local extrema in the search space. Both 

the spectral amplitudes and phases are encoded as strings of 8-bit chromosomes and two genetic 

operators, crossover and mutation, are used to generate the next-generation solutions. 

Tournament selection with elitism is employed to ensure monotonically convergence of the 

solution [S13]. The FROG error is defined as ߝ ൌ ට ଵ

ேమ
∑ |ܵሺ߱, ሻݐ െ ܵ௧ሺ߱, ሻ|ଶேݐ
,ୀଵ , where 

ܵሺ߱, ,ሻ and ܵ௧ሺ߱ݐ  .ሻ are the measured and reconstructed spectrogramsݐ

To make sure the retrieval program converges accurately to the right answers, we tested the 

retrieval program with a few sets of simulated FROG spectrograms.  Figure S8 shows a retrieval 

example of an ideal Gaussian pulse with dispersion randomly generated by the simulation 

program.  We next placed the ideal Gaussian pulse with dispersion on a cw background, with 

results on the correct retrieval shown in Figure S9.  Of note, the fringe patterns in the spectral 

domain have started to appear in this case.  For the pulse on a cw background and for delays 

longer than the pulse duration, the FROG signal has two temporally-separated pulses due to the 

mixing between the cw background and the pulse.  Such two pulses result in the spectral 

interference patterns.  Finally, we placed the simulated pulse with dispersion on a cw 
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background, now with additive white noise to mimic the experimental data.  The amplitude of 

the additive white noise is chosen such that the resulting FROG errors are between 2.6% to 

2.8%, close to the experimentally obtained value (2.7%).  Four example retrievals are shown in 

the Figure S10.  We emphasize that in all cases, the pulse shapes are still faithfully reconstructed 

and the temporal phase profiles only show from minor deviations from run-to-run. 

 

 

Figure S8 | Retrieval of ideal Gaussian pulse with dispersion. a, simulated and retrieved 

FROG spectrograms. b, intensity profile comparisons between simulated input pulse and 

retrieved pulse. c, phase profile comparisons between simulated input pulse and retrieved pulse. 
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Figure S9 | Retrieval of ideal Gaussian pulse with dispersion, on a cw background. a, 

simulated and retrieved FROG spectrograms. b, intensity profile comparisons between simulated 

input pulse and retrieved pulse. c, phase profile comparisons between simulated input pulse and 

retrieved pulse. 
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Figure S10 | Retrievals of ideal Gaussian pulse with dispersion, on a cw background, with 

additive white noise. Four example cases are illustrated. In each, the pulse shapes are faithfully 

reconstructed and the temporal phase profiles only show minor deviations from run-to-run. 
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Figure S11 | Normal dispersion Kerr comb evolution. Growth of the RF amplitude noise and 

the comb spectrum (inset) are measured at four different pump detunings over a 30 pm range as 

the pump is tuned into the cavity resonance (from (a) to (d)). As we tune the pump wavelength 

further into resonance and more power is coupled into the microresonator, the bandwidth of the 

secondary comb families grows and the spectral overlap between them becomes more extensive, 

resulting in an increase of RF amplitude noise and merging of multiple RF spikes to form a 

continuous RF noise spectrum. After sweeping the detuning and power levels to generate a broad 

comb spectrum, we next perform an abrupt discrete step-jump in both detuning and power to 

achieve the low phase noise state, and are able to find a set of parameters at which the RF 

amplitude noise drops by orders of magnitude and approaches the detector background noise 

(Figure 1d). The phase-locked comb typically stabilizes for more than three hours. 
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Figure S12 | Temporal fringes resulting from the primary comb lines. Without the primary 

comb lines (A), the AC trace shows no temporal fringes.  When the primary comb lines are 

present (B,C), temporal fringes with a period matching the separation of the primary comb lines 

are clearly observed. 

IV. Numerical simulations 

In our model we numerically studied the Kerr comb generation using formalisms of either 

the nonlinear coupled-mode equations, for the flexibility, or the Lugiato-Lefever equation, for its 

computing efficiency. For the results shown in Figure 3, the Lugiato-Lefever equation is solved 

for an efficient modeling of  256 modes around the cw pump. For the results shown in this 

section, the nonlinear coupled-mode equations are solved for up to  60 modes around the cw 

pump, limited by the availability of computing power. In all cases, the simulation was 

interrupted once the solution reaches its steady state. 

In the numerical simulation, we present the spectrum of the resonator as 	2ߨ൫ߥ െ ൯ߥ ⁄ߛ ൌ

ிௌோሺ݆ߥ െ ݆ሻ  ߥ ,బ, whereߥߜ ൌ ߱ ⁄ߨ2  is the linear frequency of the mode, 2ߛ is the FWHM 

of the pumped mode, ߥிௌோ is the dimensionless local averaged free spectral range of the 

resonator (in the simplest case of no mode interaction it is 2ߥிௌோ ൌ ൫ߥబାଵ െ బିଵ൯ߥ ሺߛ ⁄ߨ2 ሻ⁄ ), 

and ߥߜ,బ is the dimensionless GVD parameter. For the microresonator used in this study, 

ிௌோߥ ൌ 1283.965	and ߛ ൌ ߨ2 ∙  Figure S13 plots the dimensionless GVD parameter .(.ݖܪܯ90

as a function of mode number. In the simulation shown in Figure 3, the experimentally measured 

resonant frequencies, whenever possible, and Q-factors of the fundamental mode family are 

input directly into the model. For modes beyond our measurement capability, we assume the 

GVD is normal without higher order dispersions and local dispersion disruptions induced by 

modal interactions. Namely, ߥߜ,బ ≅ െమ
ଶ
ሺ݆ െ ݆ሻଶ. The procedure is justified by the good 
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agreements between the COMSOL calculations and the dispersion measurements (Figures 1b, 

S5a, and S5b) and the small TOD from the COMSOL calculation.   

 

Figure S13 | Dimensionless GVD parameters used in numerical modeling. In the simulation 

shown in Figure 3, the experimentally measured resonant frequencies, whenever possible, and Q-

factors of the fundamental mode family are input directly into the model (blue curve and 

datapoints). For wavelength range not covered by the measurement, we assume the GVD is 

normal without higher order dispersions and local dispersion disruptions induced by modal 

interactions (red curve). 

Below we also show numerical simulations results when only the second order dispersion 

and attenuation were considered. These scenarios allow us to better and more rapidly understand 

the properties of the comb generation in normal GVD resonators. In the first simulation effort, 

we found that the broad phase locked Kerr comb exists in the microresonator having a normal 

GVD and no higher order dispersions. Furthermore, the Q-factor is assumed to be a constant 

across the whole wavelength range.  The generated pulse has a very specific shape and it 

corresponds to a high-order dark pulse (or a manifold of dark pulses) travelling inside the 

resonator (Fig. S14). 

To demonstrate the impact of the wavelength-dependent Q-factors of the resonator modes 

on the mode-locking, we solved the same problem with the introduction of resonance linewidth 

in the forms of ߛ ൌ ሾ1ߛ  0.003ሺ݆ െ ݆ሻଶሿ and ߛ ൌ ሾ1ߛ  0.01ሺ݆ െ ݆ሻଶሿ. As the result, the 

spectral shape of the comb profile as well as the pulse shape changed drastically (Fig. S15). This 
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simulation shows the importance of the wavelength-dependent Q-factors in stabilizing and 

shaping the pulse structures. 

 

Figure S14 | Kerr comb generated in a microresonator characterized by a large normal 

GVD and a wavelength independent Q-factors. In this simulation, we assume the 

microresonator has no higher-order dispersions and its GVD is characterized by ܦଶ ൌ 0.03. 

Furthermore, the Q-factor is assumed to be a constant across the whole wavelength range. The 

pump power is 49 times larger than the threshold and the resonance red-detuning is 17.4ߛ.   

 

Figure S15 | Kerr comb generated in a microresonator characterized by a large normal 

GVD and a wavelength dependent Q-factors. Different from Figure S14, here we assume the 

microresonator has a wavelength-dependent Q-factor and its resonance linewidth is in the forms 
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of ߛ ൌ ሾ1ߛ  0.003ሺ݆ െ ݆ሻଶሿ (top) and ߛ ൌ ሾ1ߛ  0.01ሺ݆ െ ݆ሻଶሿ (bottom).  The resonance 

red-detuning is 14.2ߛ and 11.5ߛ, respectively. 

To characterize the numerical artifact due to limited number of modes taken into 

consideration, we repeated the simulations for 121 modes. We observed that the solution (comb 

spectra, pulse width and shape) only has a relatively weak dependence on the number of modes 

when the modes are more than 100 in the simulations. Furthermore, the artifact was mainly 

observed on the spectral wings. For the modes close to the carrier, the comb line intensities vary 

only by roughly 1% between simulations with 101 and 121 modes. 

 

Figure S16 | Kerr comb generated in a microresonator characterized by a small normal 

GVD and a wavelength dependent Q-factors. For microresonators possessing a small normal 

GVD, both bright pulse (top) and dark pulse (bottom) can be generated. For the bright pulse 

generation shown here, ܦଶ ൌ 0.003 and ߛ ൌ ሾ1ߛ  0.003ሺ݆ െ ݆ሻଶሿ. The pump power is 49 

times larger than the threshold and the resonance red-detuning is 10ߛ. For the dark pulse 

generation shown here, ܦଶ ൌ 0.002 and ߛ ൌ ሾ1ߛ  0.001ሺ݆ െ ݆ሻଶሿ. The pump power is 25 

times larger than the threshold and the resonance red-detuning is 7.2ߛ.   

Now we reduced the GVD value and repeated the simulation. As the result, a possibility of 

both bright and dark pulse generation was found. The number of attractors corresponding to 
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generation of stable mode-locked pulses increased significantly as compared with the one for the 

case of larger GVD. Examples of the Kerr combs found the simulations are shown in Figure S16. 

Different from the case of large normal dispersion where only dark pulses exist, both bright and 

dark pulses are possible depending on the exact combination of dispersion and bandpass filter 

bandwidth. Experimentally, the mode-mismatched coupling also plays a role in changing the 

pulse shape as the imperfect coupling [S14] acts as an external filtering. A microresonator with 

add-drop ports will serve as a better platform for further investigation on the dark solitons [S15]. 

There exist multiple other solutions besides the fundamentally mode locked frequency 

combs generating short pulses. Dynamical solutions, such as breathers, are available. Multi-pulse 

regimes are feasible. Sometimes multiple pulses overlap, creating unexpected pulse shapes. For 

example, it is possible to generate square pulses directly out of the microresonator (Figure 3c).  

The simulation shows that tuning the profile of the Q-factors as well as the GVD is a powerful 

way to significantly increase the capability of these microresonators to generate arbitrary optical 

pulse shape.   

V. Analytic solution of normal-dispersion Kerr frequency comb 

Here we look for the Gaussian solution of Eq. (1) located at cw background and use the 

variational method to find parameters of the solution [S16]. 

ە
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where ܲ is the power of the cw background, ߮ is the phase of the background wave, ܲ is the 

pulse peak power (ܧ ൌ ܲ߬ is the pulse energy), ݍ is the chirp, ߬ is the pulse duration, and ߮ is 

the phase of the pulse. 

Substituting Eq. (S1) into Eq. (1) and assuming that the pulse energy is much lower than the 

cw energy but the pulse peak power is much higher than the DC background ( ܲ ோܶ ܲ߬⁄ ≫ 1	and 

ܲ ܲ⁄ ≫ 1), we can get the equation describing the cw background as 

ඥ ܲ ൬ߙ 
ܶ

2
 ߜ݅ െ ߛ݅ ܲ൰ ൌ ݅ඥ ܶ ܲ݁

ሺఝିఝሻ																																																										ሺܵ2ሻ 

and the approximate solution is 
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On the other hand, the time-dependent part of Eq. (1) can be written as 
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To describe the behavior of the pulse generated in the resonator we have to find values of four 

parameters: ܲ, ߮, ݍ, and ߬. The parameters are connected by a set of self-consistent equations 

which can be found using variational approach [S16]. We introduce the Lagrangian density 
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൰ and the variation of the Lagrangian 

density results in the unperturbed nonlinear Schrödinger equation 
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Taking into account that ܣ does not depend on ܶ directly, we write 
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From Eqs. (S1), (S5), and (S6), we can write the Lagrangian of the system and the Lagrangian 

equations as 
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 ሺܵ8ሻ																																																																				ݐ݀

where	ݎఫሶ ൌ ൛߲ ܲ ߲ܶ⁄ , ߲߮ ߲ܶ⁄ , ݍ߲ ߲ܶ⁄ , ߲߬ ߲ܶ⁄ ൟ and ݎ ൌ ൛ ܲ, ߮, ,ݍ ߬ൟ. 
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Again, under the assumption that the pulse energy is much lower than the cw energy but the 

pulse peak power is much higher than the DC background ( ܲ ோܶ ܲ߬⁄ ≫ 1and ܲ ܲ⁄ ≫ 1), we 

can get the equations describing the Gaussian pulse as 
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Further assuming that ݍଶ ≫ Ω
ଶ߬ଶ ≫ 1, we finally reach the approximate solution 
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