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Isotropic gap formation, localization, and
waveguiding in mesoscale Yukawa-potential
amorphous structures
Murat Can Sarihan 1,2✉, Alperen Govdeli1, Zhihao Lan 3, Yildirim Batuhan Yilmaz1, Mertcan Erdil1,

Yupei Wang3, Mehmet Sirin Aras2, Cenk Yanik 4, Nicolae Coriolan Panoiu 3✉, Chee Wei Wong 2✉ &

Serdar Kocaman 1✉

Amorphous photonic structures are mesoscopic optical structures described by electrical

permittivity distributions with underlying spatial randomness. They offer a unique platform

for studying a broad set of electromagnetic phenomena, including transverse Anderson

localization, enhanced wave transport, and suppressed diffusion in random media. Despite

this, at a more practical level, there is insufficient work on both understanding the nature of

optical transport and the conditions conducive to vector-wave localization in these planar

structures, as well as their potential applications to photonic nanodevices. In this study, we fill

this gap by investigating experimentally and theoretically the characteristics of optical

transport in a class of amorphous photonic structures and by demonstrating their use to

some basic waveguiding nanostructures. We demonstrate that these 2-D structures have

unique isotropic and asymmetric band gaps for in-plane propagation, controlled from first

principles by varying the scattering strength and whose properties are elucidated by estab-

lishing an analogy between photon and carrier transport in amorphous semiconductors. We

further observe Urbach band tails in these random structures and uncover their relation to

frequency- and disorder-dependent Anderson-like localized modes through the modified

Ioffe-Regel criterion and their mean free path - localization length character. Finally, we

illustrate that our amorphous structures can serve as a versatile platform in which photonic

devices such as disorder-localized waveguides can be readily implemented.
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A longstanding view in photonics has been that disorder is
an undesirable feature, primarily due to its detrimental
effect of light scattering with increased optical losses.

However, recently, an alternative view has been emerging, namely
that the behavior of light in optical structures defined by random
permittivity distributions could exhibit a variety of fascinating
properties and thus offer new opportunities in photonics for
fundamental and applied research1–3. For example, the existence
of photonic band gaps in such disordered structures is somewhat
counterintuitive, as the well-established paradigm had been that
long-range periodic order was a prerequisite for the formation of
band gaps via coherent wave scattering. Compared to the band
gaps in photonic crystals (PhCs), which are highly anisotropic,
band gaps in amorphous photonic structures are inherently iso-
tropic and less sensitive to fabrication imperfections, thus pro-
viding improved functionality. Such isotropic band gaps of
amorphous structures have been examined in the microwave4,5

and visible wavelengths6.
Amorphous photonic structures with artificially engineered

disorder, characterized by random distributions of the refractive
index, represent ideal platforms to study Anderson localization
and related phenomena, such as enhanced or arrested wave
transport7–22. The origins of wave transport and the presence of
Anderson-like localization in 2D amorphous photonic structures
are highly debated topics17,23. The role of short-range order in
band gap formation is well-established4,24, and the formation of
band gaps under only short-range order is experimentally
demonstrated in this article. Furthermore, a genuine Anderson
localization transition was thought to occur only in 3D amor-
phous structures25,26, while only infinite 2D structures can exhibit
Anderson localization. This idea was challenged for out-of-plane
(TM) polarization, where the scatterers behave as aligned in-
plane monopoles, reducing the problem to scalar wave localiza-
tion, for which Anderson transitions were observed in several
studies6,13,23,26. For in-plane (TE) polarization, each scatterer acts
like a dipole with a different orientation, which is essentially a
vector-wave scattering phenomenon that long eluded the obser-
vation of localized states17,27–29. Finally, in a recent theoretical
study, it was observed the presence of Anderson-like localization
for TE (vector) waves in stealthy hyperuniform structures for a
moderate density of scatterers. It was further demonstrated that
hyperuniformity is not a prerequisite, the correlated disorder
being sufficient to induce a transition to Anderson
localization23,27,30. Here, we looked for the signatures of TE
(vector) wave localization in Yukawa-potential amorphous
structures.

Equally important, amorphous photonic structures have found
technological applications in spectroscopy31, random lasers32,33,
enhanced light-matter interactions34–36, and topological
photonics37–41. Furthermore, amorphous photonic structures
could also provide new or improved functionalities to photonic
integrated circuits, wherein their inherent randomness renders
immaterial the influence of fabrication imperfections42,43.

In this study, we examine first the formation and dependencies
of band gaps in Yukawa potential amorphous structures, along
with wave localization, modified Ioffe-Regel factors, and appli-
cations to photonic integrated circuits. In measurements and
theory, we implement Yukawa potential amorphous structures
(YPAS) with short-range order, known to have spatially homo-
geneous and isotropic frequency dispersion characteristics. We
nanofabricated and characterized these amorphous photonic
structures in slab and waveguide configurations in the near-
infrared regime, and uncovered the band gaps and key wave
transport character dependencies on frequency and disorder
strength. Furthermore, we uncover similarities between the
properties of band tails of electronic and photonic amorphous

structures. We also examine the nature of in-plane-polarization
(TE) mid-gap states, namely, we seek to clarify whether they are
Anderson-like localized optical modes that satisfy the Ioffe-Regel
criterion. The results presented here can provide general guide-
lines for designing photonic components based on amorphous
structures, thus forming the basis for designing key building
blocks such as beam splitters, mirrors, optical cavities, and ran-
dom lasers with isotropic emission.

Results and discussion
Yukawa-potential amorphous photonic structures. The elec-
trical permittivity distribution of the YPAS is generated using a
Metropolis Monte Carlo algorithm sampling all configurations to
construct a Markov chain for transition probabilities of each
particle (hole)6,44,45. Consequently, the amorphous structure
mimics the natural crystalline-to-glass transition of a semi-
conductor crystal, whereby each hole represents a point scattering
particle in a colloidal, liquid-like structure, and the repulsive
Yukawa potential governs the interaction between holes,
vðrÞ ¼ ðv0=rÞ expð�r=rsÞ; r < r0

6,45. Here, rs is the screening
length, and v0 is a constant characterizing the strength of the
potential. A critical parameter of the generation algorithm is the
normalized temperature, T*= kBT/v0, which quantifies the degree
of randomness of a configuration. These parameters determine
the Yukawa-potential equilibrium configuration, whose spatial
characteristics are quantified by the average distance between the
scatterers46, normalized in this work to the lattice constant of a
periodic hexagonal lattice. In Fig. 1a–c, an example of hole dis-
tributions for T*= 0.2, T*= 0.8, and T*= 5.0 is given to
emphasize the change in the equilibrium from low to high
randomness.

To illustrate the unique features of YPASs, we compare in
Fig. 1 the structural properties of periodic, disordered, and YPAS,
quantified in both real and reciprocal spaces. The periodic
structure is a hexagonal lattice with lattice constant, a, whereas
the disordered structure is constructed from the periodic lattice
by displacing each hole along the x- or y-axes by a quantity δ
obeying a uniform random distribution defined in the interval,
[− 0.25a/2, 0.25a/2] marked with a pseudo-temperature para-
meter 0.25 in Fig. 1e. The Yukawa-potential configurations are
different from the periodic and disordered structures in several
key aspects, which is apparent by performing a Fourier transform
analysis of the resulting hole distributions1,14,47–49. The Fourier
transform of periodic (Fig. 1d) and disordered (Fig. 1e)
permittivity distributions have Bragg peaks, which is a signature
of periodicity and long-range order. We note that, for the
disordered structure, the added perturbation smears out and
broadens the Bragg peaks, but their occurrence signifies that the
underlying structure periodicity is preserved. The Fourier trans-
form of the YPAS (Fig. 1f) noticeably, however, is isotropic and
shows no local maxima.

The range of spatial order is characterized by the radial
distribution function, g(R), which is equal to the number dN of
holes located in the annulus (R, R+ dR)50. Specifically, as per
Fig. 1(g), g(R) shows discrete peaks even at large distances for the
hexagonal lattice, confirming the long-range order. Upon adding
disorder, these peaks begin to smear out, yet the underlying
pattern is still preserved up to 10 unit distances, as per Fig. 1(h).
In the amorphous structure, however, the peaks of the radial
distribution function are attenuated and merged with the pedestal
at about 5 unit distances (Fig. 1(i)), indicating the suppression of
long-range order.

Isotropic band gap in the amorphous structures. Previous
studies at microwave frequencies showed that PhCs and
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amorphous structures with the same characteristic length share
the first band gap because in both cases, the band gap originates
from short-range order4,24. Thus, we considered a reference PhC
slab with a hexagonal lattice of air holes. Furthermore, for all
three configurations (PhC, disordered, and amorphous struc-
tures), the characteristic length, a (i.e., the averaged nearest-
neighbor distance between holes), slab thickness, h, and hole
radius, r, are kept the same, so that in all three cases there is a
common transverse-electric (TE) band gap. Here, TE mode
designation is in accordance with photonic crystal slab termi-
nology, where even modes are called TE-like and odd modes are
called TM-like. According to our simulations, it is also possible to
form TM (transverse-magnetic) band gap when dielectric rods
are used inversely. For the parameters used in our experiments,
namely a= 400 nm, h= 220 nm, and r= 110 nm, the mid-gap
wavelength is about 1500 nm. Figure 2a shows the scanning

electron micrograph (SEM) of the amorphous structure with 400
nm average distance between holes, fabricated via electron-beam
nanolithography followed by inductively coupled plasma reactive
ion etching on silicon-on-insulator (SOI) wafers with 220 nm
thickness of the silicon device layer. Each sample is suspended to
form an air-bridge membrane with buffered oxide etch (BOE)
and thus creates a symmetric planar membrane configuration.

The dispersive properties of our structures are investigated
using finite-difference time-domain computations51,52. Figure 2b
shows the computed transmission spectra of the PhC and
amorphous structures. These spectra show that for the YPAS with
T*= 0.4 and r= 110 nm, the optical transmission is mainly
independent of the propagation direction, the mobility edges fit
for both x (blue) and y (red) directions, which matches with the
overlapping photonic band gap of the PhC (green) illustrating
that the structure is isotropic. In contrast, the PhC structure is
highly anisotropic, with the transmission different along the
Γ−M and Γ− K symmetry axes (detailed in Supplementary
Note 1 and Fig. S2b). We note that, while the gap width is similar
for both photonic structures, the isotropy provided by the YPAS
can be employed to achieve all-angles broadband mirrors, devices
with reduced angle sensitivity, and waveguiding along arbitrary
directions.

For the T*= 0.2 realization, the transmission is measured for
two samples with hole radii of 110 nm and 120 nm, whereas for
the T*= 0.4 realization, transmission is measured for a sample
with r= 120 nm in both x- and y- directions. All three
measurements are depicted in Fig. 2c with solid blue lines. All
the measured spectra match well with our simulation results
(dashed red), where we extracted the actual hole positions and
average hole radius from the SEM images of the device. The band
tails are fitted between mid-gap and dielectric and air band edges
according to the Urbach expression, T � eðλ�λmidgapÞ=Δλ, where Δλ
is the effective width of the tail53. In this configuration, dielectric
band tail widths are measured as 12.83 nm for r= 110 nm and
14.98 nm for r= 120 nm, for T*= 0.2. For the air band tail, the
change is more pronounced, 33.27 nm for r= 110 nm and 39 nm
for r= 120 nm, indicating the higher density of localized states at
the air band with larger holes. The tail widths are longer than the
widths fitted in the numerical spectra, which might be due to
fabrication-related disorders. In addition, we note that for the
larger hole radius of 120 nm, a slight blue-shift of the mid-gap
wavelength is observed, which agrees with predictions based on
the perturbation theory for a larger radius, where a larger amount
of dielectric material is removed from the homogeneous slab.
When T* increases from 0.2 to 0.4, the mid-gap wavelength
remains largely unaffected (cf. Fig. 2(c)). Importantly, the
spectra are asymmetric, displaying a steeper slope at the
longer-wavelength edge. The origins of the longer-wavelength
steeper slope and the mid-gap blue-shift are discussed together
with the localization strength and air-dielectric band perturba-
tion in the next subsection. For the T*= 0.2 realization, the
transmission is measured for two samples with hole radii of
110 nm and 120 nm, whereas for the T*= 0.4 realization,
transmission is measured for a sample with r= 120 nm in both
x- and y- directions. All three measurements are depicted in
Fig. 2c with solid blue lines. All the measured spectra match
well with our simulation results (dashed red), where we
extracted the actual hole positions and average hole radius
from the SEM images of the device. The band tails are fitted
between mid-gap and dielectric and air band edges according
to the Urbach expression, T � eðλ�λmidgapÞ=Δλ, where Δλ is the
effective width of the tail53. In this configuration, dielectric
band tail widths are measured as 12.83 nm for r= 110 nm and
14.98 nm for r= 120 nm, for T*= 0.2. For the air band tail, the

Fig. 1 Comparison of periodic and disordered lattices with Yukawa-
potential amorphous structures. a–c The permittivity distributions, ϵ(x, y),
correspond to amorphous structures with increasing randomness. The
randomness is quantified by the normalized temperature T*, which is given
as (a) 0.2, (b) 0.8, and (c) 5.0. d–f Fourier transform of the periodic,
disordered, and amorphous structures, respectively. ϵ(x, y) are shown in the
insets with the silicon (etched air hole) regions depicted in black (white).
The periodic photonic crystal has a hexagonal symmetry with lattice
constant a, whereas the disordered structure is generated from the periodic
lattice by randomly perturbing each hole (see text for details). For the
amorphous structure, the hole distribution is generated using a Metropolis
Monte Carlo sampling approach. The normalized temperature, T*, in the
three cases, has values of 0, 0.25, and 0.2, respectively. The value of (e)
indicates the range of the added randomness to (d) in terms of ± 0.25*a
introduced to show the difference between disordered and amorphous
structures. g–i Corresponding radial distribution g(R) of the air holes for the
three lattice structures analyzed in d–f, respectively.
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change is more pronounced, 33.27 nm for r= 110 nm and 39
nm for r= 120 nm, indicating the higher density of localized
states at the air band with larger holes. The tail widths are
longer than the widths fitted in the numerical spectra, which
might be due to fabrication-related disorders. In addition, we
note that for the larger hole radius of 120 nm, a slight blue-shift
of the mid-gap wavelength is observed, which agrees with
predictions based on the perturbation theory for a larger
radius, where a larger amount of dielectric material is removed
from the homogeneous slab. When T* increases from 0.2 to 0.4,
the mid-gap wavelength remains largely unaffected (cf. Fig. 2c).
Importantly, the spectra are asymmetric, displaying a steeper
slope at the longer-wavelength edge. The origins of the longer-
wavelength steeper slope and the mid-gap blue-shift are
discussed together with the localization strength and air-
dielectric band perturbation in the next subsection.

In Fig. 2d, we examine the band gap widths for different values of
the normalized temperature, T* (the degree of randomness increases
with T*), with the corresponding transmission spectra plotted in the
inset. The mid-gap wavelengths are selected as the minimum
transmission point, while the gap boundaries are set according to 10-
dB fall-off from the dielectric and air band levels.We observe that the
band gap width for T*= 0.2 and T*= 0.4 has similar values and is
almost equal to that of the PhC (T*= 0). At larger T*, an increasing
number of localized states emerges inside the band gap and enhances
the light scattering. As a consequence, the transmission is suppressed
almost entirely. We further observe the localized-to-extended mode
transition with increasing T*, where the increase in localized mode
density causes a reduction in the gap width of T*= 0.4, from 215 nm
to 162 nm. However, at T* > 0.8, we observe a shallow gap-like
regime where the transmission is suppressed only 10 dB compared to
dielectric and air bands. This localized-to-extended transition will be
examined further using effective modal width and localization
length. Moreover, we note that, with increasing T*, the mid-gap
wavelength is slightly blue-shifted within a region of 1.45 and 1.5 μm,
due to the change in the lowest transmission point with localized-to-
extended mode transition. The only noticeable exception is T*= 1.0,
where high statistical variations in the configuration change the
lowest transmission point. For our experimental measurements, we
chose T*= 0.2 and T*= 0.4, with hole radii of 0.275a and 0.3a
respectively. The nanofabrication feasibility of the structures and
accessibility of probing the angular dependencies guided us in
choosing these values.

Flexible waveguides with Yukawa-potential amorphous struc-
tures. Following the experimental observation of photonic band
gaps and Anderson-like localization of YPAS, we demonstrate
next that such disordered optical media can be employed for
optical nanodevices, such as sub-wavelength waveguides. With
the isotropy of the band gap of the amorphous structures, the
orientation of the waveguide can be arbitrarily chosen. This is in
stark contrast with the case of 1D waveguides in PhC slabs, for
which the waveguide mode dispersion depends strongly on the
waveguide-wavevector orientation. Likewise, more complex
waveguide configurations, such as sharp bends and 1-to-N
splitters, can be readily implemented using our amorphous
materials. Note that to ensure that the waveguide has a constant
width, we added a row of equally spaced holes adjacently to both
sides of the waveguide42, as per Fig. 3(b). Moreover, guided by
our previous simulations43, the waveguide width, w, was opti-
mized so that the maximum transmission is achieved at the mid-
gap wavelength, a condition fulfilled for w ≈ 901 nm (more
details on the waveguide design process are in our Supplemen-
tary Note 3). Figure 3a shows the simulated transmission spectra
of the optimized waveguide with different lengths, for
r= 100 nm. At the optimized mid-gap wavelength, the simula-
tion indicates a 0.5 dB insertion loss, without any noticeable
propagation loss up to 10.8 μm, a very promising result for chip-
scale applications.

Figure 3c shows the measured transmission spectrum for a
waveguide oriented along the x- and y-axis. We note that the
measured value of the 3 dB cutoff wavelength agrees well with the
simulation results presented in Fig. 2c. To further validate our
conclusions, we fabricated another waveguide in the same
amorphous structure with the same geometrical parameters,
except that it was oriented at an angle of 23 ∘ to the x-axis (see the
SEM in Fig. 3d). The corresponding transmission spectrum is
shown in Fig. 3e and is very similar to that presented in Fig. 3c in
terms of cutoff wavelength and baseband propagation loss. These
results further support the band gap isotropy of our YPAS, which

Fig. 2 Photonic band gaps in Yukawa-potential amorphous structures.
a Scanning electron micrograph (SEM) of an amorphous nanostructure
with T*= 0.2, r= 110 nm, and h= 220 nm, fabricated onto a silicon-on-
insulator (SOI) wafer. Scale bar: 1 μm. Insets show zoom-in SEMs of two
structures with r= 110 nm (top left) and r= 120 nm (bottom right). Scale
bars: 250 nm. b Comparison of transmission spectra of the PhC and
amorphous structure with the same thickness and hole radius and with
T*= 0.4. The latter are calculated for propagation along the x- and y-axes.
The right y-axis indicates the transmission in arbitrary units for the PhC
band gap (green) scaled to show the match between amorphous and PhC
band gaps. The cyan shade is a marker for the band gap region of the
reference photonic crystal. c Measured transmission spectra corresponding
to YPAS with T*= 0.2 and hole radius of top: 110 nm and middle: 120 nm,
and with T*= 0.4 and bottom: 120 nm respectively. The blue and black lines
are the experimentally measured spectra in x- and y- directions and
smoothed via Savitsky-Golay filtering; the red line is the numerically
computed spectra by importing the actual fabricated structure in the
software. The cyan shade is a marker for the band gap region. d Computed
band gap dependence on T*, where the line bars indicate the region of
suppressed transmission according to 10-dB fall-off from the dielectric and
air band lev- els, while the circle pointer shows the minimum transmission
point. The dotted line is a guide to the eye. In the inset, the transmission
spectra determined for different values of T* are shown by stacking each
line, whose y-axis values correspond to transmission in arbitrary values,
with the same scale for each line. The PhC slab corresponds to T*= 0 and
for comparison purposes, the spectrum in this case and in b is determined
by averaging the PhC spectra over the propagation directions.
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is the indispensable condition for long-sought complete band
gaps in planar structures.

Anderson-like localization in Yukawa-potential amorphous
structures. After investigating experimentally the formation of
optically isotropic photonic band gaps in YPASs, we further ana-
lyzed the characteristics of optical transport in these structures
theoretically. Of interest is the Anderson light localization in our
YPASs. Particularly, the effective length of the local field distribu-
tion, Leff, which quantifies the strength of the field localization and

is defined as Leff � P�1=2 ¼ f½R IðrÞ2dr�=½R IðrÞdr�2g�1=2
. Here,

I(r) is the spatial distribution of the optical field, r= (x, y) is the in-
plane position vector, and P is the inverse participation ratio9. The
effective length was calculated for different values of the tempera-
ture T*, and a statistical average over 10 samples was performed for
each temperature. The effective length, whose wavelength depen-
dence is depicted in Fig. 4a, varies linearly with the number of
available states in the amorphous structure. The results in Fig. 4(a)
show that inside the band gap Leff increases with T*, with an
averaged mid-gap value of Leff= 1.93 μm ≈ 5a being observed for

T*= 0.2. Moreover, for the same T*, Leff decreases by about
3 × when the wavelength varies from the edge of the band gap to its
center, underlying the transition of these edge modes away from
weak localization and diffusive transport.

As can be seen in Fig. 4a, Leff is smaller and more dispersive at
the air-band edge (short-wavelength edge) of the band gap as
compared to its behavior at the dielectric-band edge (long-
wavelength edge). That is, there is spectral asymmetry with
respect to the mid-gap, as noted earlier. A similar phenomenon is
observed in condensed matter physics, where the transition of a
liquefied crystalline semiconductor to a glassy medium is
accompanied by the formation of what is known as Urbach
tails53,54. They emerge when the valence and conduction bands
begin to extend into the band gap due to the creation of localized
trap states near the band edges. These exponential tails are
revealed by the absorption spectra and are primarily determined
by the thermal motion inside the lattice, disorder in the crystal
structure, and impurity atoms55. From the tight-binding model,
the valence (conduction) band is of bonding (antibonding)
nature54. Moreover, the valence (conduction) tail states are
associated with short (long) bonds inside the lattice, and since the
short bonds are affected more by disorder, the corresponding
states are more localized, and the valence band tail is broader55.
In other words, the Urbach tails of the valence and conduction
bands have different slopes; namely, the slope of the valence band
tail is smaller than that of the conduction band tail54. This
behavior is observed in our Yukawa-potential material, which can
be viewed as a photonic analog of amorphous material in
condensed matter physics.

As the plots presented in Figs. 2b and 4a suggest, the
wavelength dependence of E-field localization within the air and
dielectric band regions has different slopes. Specifically, for
T*= 0.4 case shown in Fig. 2b, the 1/e intensity fall-off length for
the air band tail is 16.54 nm, whereas a steeper fall-off of 9.03 nm
is observed for the dielectric band tail. Hence, the air band is
more sensitive to perturbations, a result that can be explained as
follows: for the air band, a more significant fraction of the E-field
is located in the hole regions, and therefore, the perturbation
associated with a random displacement of the location of the
holes is more substantial in this case. As the wavelength
increases across the band gap, the E-field is pushed into the
dielectric regions. This behavior is similar to that seen in PhCs,
where the difference between E-field localization corresponding
to two consecutive bands leads to a band gap formation56.
Moreover, as expected, the wavelength dependence of the E-field
localization levels off as T* increases. Note that the wavelength
dependence of the H-field localization shows a behavior opposite
to that of the E-field (detailed in Supplementary Note 1). In
addition, this perturbation affects the modes in the air band
more, leading to a more extensive spectral broadening of these
modes. As a result, the air band tail would have a smaller slope
as compared to that of the dielectric band, a conclusion fully
supported by the transmission spectra in the subsequent Fig. 2b
through 2d9.

Now, let us examine the spatial distribution of the modes
located inside the band gap and quantify their degree of
localization. We first compute the optical modes of amorphous
structures characterized by each T*, and which are located in the
region of the dielectric-band tail, i.e., close to the K-symmetry
point. An example sampling of such modes is illustrated in Fig. 4b
(detailed in Supplementary Note 2 and Figs. S5 and S6. From this
set of modes, we select those with large Q-factor, which are
presumably more localized (see the insets of Fig. 4c, d) and thus
are not affected by the structure boundaries. Since we want to
characterize structures ranging from weakly perturbed PhCs
(T*≪ 1) to YPAS with a large T*, we used the modified Ioffe-

Fig. 3 Experimental characterization of the band gap of Yukawa-potential
amorphous structures and corresponding waveguides. a Transmission
spectra of straight waveguides embedded in an amorphous structure with
w= 901 nm and r= 100 nm. The dashed lines indicate the transmission
spectra through a section of amorphous structure, whereas the distance
from the excitation source is indicated in the legends. b Scanning electron
microscopy (SEM) of an optical waveguide based on a YPAS with T*= 0.2
and r= 120 nm. The waveguide is oriented along the x-axis and has a width
of 901 nm. Scale bar: 5 μm. Insets show zoom-in SEMs of different regions
of the waveguide. Scale bars: 500 nm. c Measured (blue and black lines)
and fitted (red line) transmission spectra of the amorphous waveguide
structure oriented along x-axis (blue) and y-axis (black). The 3 dB cutoff
wavelength is ~ 1448 nm. d The same as in b, except that the waveguide is
oriented at an angle of 23 ∘ with respect to the x-axis. e The same as in
c, but for the waveguide in d. The 3 dB cutoff wavelength is ~1478 nm.
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Regel factor, k*l57, where k� ¼ jk� kKbej. Here, k is the
wavenumber, kKbe is the wavenumber of the dielectric-band edge
(the K-point), and l is the mean free path. The modified Ioffe-
Regel factor implicitly assumes the existence of a band gap, which
strongly affects the free-photon density of states, while the
scatterers are much smaller than the operating wavelength. Under
these circumstances, the condition for the Anderson-like
localization is k*l≃ 1.

The Ioffe-Regel factor of the selected modes, determined for
different values of T*, is presented in Fig. 4c. These plots reveal
that the Ioffe-Regel factor is well below 1, indicating that the
modes are truly localized Anderson modes. Moreover,
the mode localization length, ξloc, can be determined by fitting
the mode intensity profile to an exponential function,
I � expð�2r=ξlocÞ9,58. Consequently, the mean free path, l, can
be obtained from the fitted parameter by the definition,
ξloc ¼ l expðπkl=2Þ, such that the modes in Fig. 4c can be
represented in the ξloc− l plane, as per Fig. 4d. From this figure,

one can see that ξloc increases with T*, with l ranging from 100
nm to 150 nm. This is only a fraction of the lattice constant, a,
whereas ξloc ≈ 1 μm= 2.5a. This demonstrates that these states
are indeed localized at the scale of the lattice constant. Note that
these conclusions hold for the modes in the air-band tail, too.

Amorphous photonic structures have been largely overlooked
when seeking to develop new photonic technologies, chiefly due
to their complex fabrication and the statistical rather than
deterministic nature of their properties. Contrary to this
commonly adopted viewpoint, we demonstrate that amorphous
photonic structures can be employed as a photonic material
platform onto which planar photonic integrated circuits with
complex configurations can be readily implemented. The key
ingredient that makes this possible is the existence of an isotropic
band gap originating from short-range order. Importantly, from a
practical standpoint, the optical properties of these amorphous
structures can be easily tuned by varying the two parameters that
control their structure, namely the average inter-hole distance
and effective temperature. This suggests that the amorphous
photonic material platform introduced here can be used to
implement key photonic devices, including Mach-Zehnder
interferometers, multiplexers, and optical microcavities, and
represents a practical testbed for new ideas emerging in the field
of wave dynamics in random media.

Methods
Generation of amorphous photonic structure configurations.
To investigate amorphous structures computationally, we
employed a Monte Carlo algorithm for the generation of per-
mittivity distributions that do not contain long-range order. For
two-dimensional (2D) photonic crystal (PhC) slabs, one
approximates rod or hole scatterers with hard disks or point
particles located in the transverse (x−y) plane, while along the z-
axis, one imposes an index guiding condition. The flow of the
Monte Carlo algorithm used to generate such amorphous pho-
tonic configurations is described below44,46.

A. An input configuration is generated. In particular, we used
as a starting structure a PhC slab configuration with a hexagonal
lattice of air holes in a silicon slab. Using an ordered crystal lattice
as a starting point allows one to use it as a reference periodic
structure when investigating the transport properties of the
resulting amorphous structure. Alternatively, a previously
generated amorphous configuration can be used as a starting
distribution, too, thus reaching equilibrium more rapidly. The
potential energy of the initial configuration is calculated assuming
that the inter-particle interactions in the system are described by
a Yukawa-potential. Statistically, rules of canonical ensembles
(constant number of elements N, volume V, and temperature T)
are used.

B. A random displacement is applied to a scatterer, randomly
selected from the distribution. The maximum allowed value of the
displacement is adjusted so that it results in an acceptance
displacement ratio, ρ, in the range of 40–60%. The difference in
the potential energy of the configuration of scatterers, induced by
this displacement, is then computed.

C. The acceptance ratio of displacements is determined using
the probability calculated from the Metropolis criterion:

ρi!f ¼ min 1; e�
Uf �Ui
kBT

� �
; ð1Þ

where Uf and Ui are the system energies in the final (f) and initial
(i) state, respectively.

D. The procedures described in steps B and C are repeated for
different scatterers until equilibrium is reached. Specifically, the
equilibrium is reached when the system energy converges to a

Fig. 4 Wave localization in Yukawa-potential amorphous structures.
a Wavelength dependence of the scattering length for different T*. The
error bars are the standard deviation of the effective length corresponding
to a given T* and to a set of multiple realizations of disorder. b Number of
modes at the normalized frequencies above but the nearby edge of the
dielectric band (K-point), for T*= 0.4. The inset shows the modal probes
used during calculations. c Modified Ioffe-Regel factor vs. the shifted wave
number, k*. d Mean free path vs. localization length, determined for the
modes in c. The dashed lines correspond to the wavelengths of the top
edge of the dielectric band (λ= 1600 nm) and mid-gap (λ= 1460 nm).The
insets of (c) and (d) show example modal distributions of the modes with
the highest quality factor (localization) from T*= 0.2 to T*= 5.0. A full list
of the selected modes is given in Supplementary Note 2, Table S1.
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steady-state value, that is when the system energy no longer
changes upon randomly displacing a scatterer.

Numerical methods. The photonic band structure of the refer-
ence PhC slab, for both the transverse magnetic (TM) and
transverse electric (TE) polarizations, have been numerically
calculated using MPB (MIT Photonic Bands) software51. More-
over, transmission spectra and local density of states (LDoS) were
computed using the finite-difference-time-domain (FDTD)
method implemented in MEEP (MIT Electromagnetic Equation
Propagation) software52. Simulated transmission spectra are
normalized using the output of a reference simulation of the same
substrate without amorphous structure.

To study these mid-gap localized modes, we first probe them
using the FDTD method implemented in MEEP52. Note that as
these modes may be highly localized spatially, to effectively
probe them, we set 25 probes covering the photonic structure
uniformly, as illustrated in Fig. 4b. As field excitation, we used a
source whose spectrum was broad enough to entirely cover the
band gap. We used the Harminv procedure available in MEEP to
analyze the spectral characteristics (normalized frequency, f, and
quality factor, Q) of the localized modes. For effective localization
length calculations, the integrals are performed in the transverse
plane crossing through the middle of the amorphous crystal slab.

Supercontinuum transmission measurements. Using a NKT
Photonics SuperKCompact supercontinuum light source, we have
conducted a broadband spectral analysis of the fabricated structures.
The laser was coupled to the amorphous structures and waveguides
through an adiabatically tapered waveguide-lensed fiber system.
The output is collected by a similar tapered waveguide-lensed fiber
system. We analyzed the spectra collected by the fiber with a
Thorlabs optical spectrum analyzer, whereas an InGaAs camera was
used to monitor the optical coupling to the on-chip waveguides. For
reference, the measured spectra were normalized to the output of
channel waveguides with uniform cross-sections. Experimental data
shown in Figs. 2 and 3 are given as normalized transmission ratio
with the aforementioned method.

Data availability
The data that support the findings of this study are available from the authors upon
reasonable request.

Code availability
The underlying code for this study is not publicly available but may be made available to
qualified researchers upon reasonable request from the corresponding author.
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Supplementary Note 1. NUMERICAL STUDIES ON PERIODIC AND

AMORPHOUS STRUCTURES

Several examples of amorphous crystal configurations generated using the Monte Carlo

algorithm, determined for different values of the normalized temperature, T ∗ = kBT , are

presented in Fig. S1. The design parameters of the properly designed photonic crystal

(PhC) slabs were used to initialize the computational algorithm for the generation of the

corresponding amorphous photonic structures. The photonic band diagram of a reference

PhC slab with air holes arranged in a hexagonal lattice is shown in Fig. S2(a), where the band

gap is indicated by the light-blue region. The transmission spectra of the PhC corresponding

to the two principal symmetry axes, Γ−M and Γ−K are given in Fig. S2(b). As expected,

they show pronounced anisotropy, both in terms of the spectral location of the edges of the

corresponding band gap and the values of the transmission. In addition, in Fig. S2(c), we

present the wavelength dependence of the local density of states (LDoS), determined for the

PhC slab and an amorphous crystal with normalized temperature, T ∗ = 0.4.

The LDoS spectrum of the PhC (red line) shows clearly the location of the band edges

with the associated singularities and a small number of states in the band gap. Note that

the small but non-vanishingly number of states located in the band gap is due to finite-size

effects in the simulated structure. The LDoS spectrum of a Yukawa-potential amorphous

structure with T ∗ = 0.4 (blue line), which was vertically shifted to facilitate the comparison

with the LDoS spectrum corresponding to the PhC case, has a band gap similar to that of the

PhC (in terms of width and mid-wavelength). However, one can notice that two exponential

T*=0.2 T*=0.4 T*=0.8 T*=1.0 T*=5.0

FIG. S1. Amorphous structure configurations generated using the Monte Carlo algorithm. The

starting structure is a hexagonal PhC with r = 0.1a, whereas the normalized temperatures of the

generated amorphous crystals are 0.2, 0.4, 0.8, 1.0 and 5.0.
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FIG. S2. (a) Band diagram of a PhC slab with thickness h = 220 nm, consisting of a hexagonal

lattice of air holes with lattice constant a = 400 nm and hole radius r = 110 nm. (b) Numerical

simulation of transmission spectra of the PhC slab given in (a), computed for the principal sym-

metry axes. (c) LDoS determined for an amorphous structure with T ∗ = 0.4 (blue line) and PhC

(red line), both having r = 100 nm. To facilitate their comparison, the spectra are offset vertically.

The spectrum of the amorphous structure displays band tail states reminiscent of the Urbach tails

observed in amorphous semiconductors. (d) Dependence of the transmission spectra on r, showing

that the band-gap size and its mid-wavelength shifts with the hole radius from 1498 nm to 1315 nm.

band tails are stretching from the band-gap edges all the way to the mid-gap region. As

discussed in the main text, the two exponential band tails have different slopes, and certain

analogies can be established between the physical mechanisms that lead to the formation

of these band tails and those responsible for the emergence of valence and conduction band

tails observed in amorphous semiconductors7.

Figure S2(d) illustrates the variation of the band-gap of an amorphous crystal when the

normalized hole radius, r/a, increases from 0.25 to 0.35 (hole radius varies from 100 nm to

140 nm). When the hole radius increases, one observes that the band gap is blue-shifted,

which is similar to what is observed in PhCs5. Furthermore, the slope of the air-band tail

decreases when the hole radius increases. This is explained by the fact that, as the radius

of the hole increases, the disorder increasingly affects the modes in the air-band tail, thus

enhancing their spectral broadening. The opposite variation is observed in the case of the

slope of the dielectric-band tail.

The Urbach band tails explained in the main text are studied by averaging the trans-

mission spectra of multiple amorphous index distributions for T ∗ = 0.2 and T ∗ = 0.4 at

3



FIG. S3. Transmission spectrum for different realizations of amorphous structures with (a) T ∗ = 0.2

and (b) T ∗ = 0.4. Data points with different colors show different realizations, while the dielectric

(blue) and air band (red) tails are fitted over the average spectrum. The band tails are fitted

between the midgap and the band edge, and corresponding Urbach parameters are given in terms

of wavelength.

Figure S3(a) and S3(b). The band tails are fitted between mid-gap and dielectric and air

band edges according to the Urbach expression, T ≈ e(λ−λmidgap)/∆λ7. The band edges are

determined according to the edge resonances similar to van Hove singularities observed in

photonic crystals. The beginning of the band tail roughly corresponds to a 10-dB trans-

mission suppression point compared to the air band, which is also used to determine the

band-gap range in Figure 2(d). For T ∗ = 0.2, we obtained a dielectric band tail slope of 4

nm and an air band tail slope of 15 nm. When the disorder increases to T ∗ = 0.4, we observe

the introduction of more localized states, pronounced by the increase in the dielectric and

air band tails slopes to 9 nm and 16 nm. The introduction of localized states can be seen

further in Figure S6.

The degree of localization inside the air regions of the electric (magnetic) field, ηe (ηh),

is defined as the ratio between the energy of the electric (magnetic) field inside the air hole

and the total energy on the electric (magnetic) field component of the corresponding mode5:
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a b

FIG. S4. Localization factor of the (a) electric and (b) magnetic field for different normalized

temperature, T ∗.

ηe =

∫
Vair

ε0|E(r)|2dr∫
Vtot

ε(r)|E(r)|2dr
, (S1a)

ηh =

∫
Vair

µ0|H(r)|2dr∫
Vair

µ(r)|H(r)|2dr
, (S1b)

where ε0 and µ0 are the vacuum electric permittivity and magnetic permeability, respectively.

The wavelength dependence of the localization factors ηe and ηh, determined for different

values of T ∗, are depicted in Fig. S4(a) and (b). As expected, they show opposite dependen-

cies, i.e., whereas the E-field is more localized in the hole regions at shorter wavelengths, the

opposite is true for the H-field. Moreover, when T ∗ increases, the wavelength dependence

of the localization factors decreases significantly, especially in the case of the E-field. These

results also indicate that a more pronounced band-gap is formed when the field localizations

corresponding to the air and dielectric bands differ significantly5.

The effective localization length, Leff , of the optical field at a given frequency in a random

photonic structure determines the mean scattering-free distance. A smaller effective length

indicates a higher degree of localization6. This effective localization length is calculated

using the following definition:

Leff =

√
[
∫
I(r)dr]2∫
I(r)2dr

, (S2)

where I(r) = |E(r)|2 is the intensity of the optical field and r = (x, y) is the in-plane position
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vector. In our calculations, the integrals in Eq. (S2) were performed in the transverse plane

crossing through the middle of the amorphous crystal slab.

The effective length provides valuable information about the degree of field localization

inside the amorphous structure. A shorter effective length indicates a higher sensitivity to

disorder for the air band and, consequently, a less steep air-band tail. Moreover, the effective

length is longer at larger wavelengths, which correspond to the dielectric band, meaning that

the optical field can propagate a longer distance in the structure, thus reducing the influence

of disorder. More details regarding the relationship between the effective length and disorder

strength, quantified by T ∗, have been presented in the main text.

Supplementary Note 2. CHARACTERIZATION OF ANDERSON

LOCALIZED MODES

The Yukawa-potential amorphous structures investigated in this work possess Anderson

localized modes with frequency inside the band gap. The optical modes near the edge of the

dielectric band (i.e. near the K-symmetry point, whose normalized frequency is f = 0.625),

determined for different values of the normalized temperature T ∗ using this procedure, are

also given in Fig. S5. One can see that at low T ∗, there are well-localized modes within the

band-gap, and as T ∗ increases, more modes emerge more deeply inside the band-gap.

To study the localization properties of these mid-gap localized modes, we chose certain

well-resolved modes at different T ∗ and calculated their frequency and Q-factor. The results

of these calculations are summarized in Table S1. One can see that as T ∗ increases, the

Q-factor of the modes tends to decrease and they become more extended (see the mode

profiles in Fig. S6). These localized modes are further analyzed by independently exciting

TABLE S1. Selected band-gap modes near the edge of the dielectric band, i.e. located near the

K-symmetry point, determined for different T ∗, where f is the normalized frequency and Q is the

quality factor.
mode number: f (Q)

T ∗ 1 2 3 4 5 6 7 8

0.2 0.6297 (3629) 0.6324 (1092) 0.6350 (2773) 0.6367 (4429) 0.6370 (2750) 0.6382 (1479) 0.6390 (3642) 0.6438 (5324)

0.4 0.6347 (1264) 0.6362 (1671) 0.6390 (676) 0.6439 (2310) 0.6452 (1842) 0.6462 (2252) 0.6464 (2875) 0.6533 (4737)

0.8 0.6437 (842) 0.6453 (734) 0.6462 (1048) 0.6476 (954) 0.6505 (1036) 0.6523 (890) 0.6595 (908) 0.6645 (799)

1.0 0.6360 (608) 0.6405 (730) 0.6435 (1249) 0.6459 (1164) 0.6465 (1517) 0.6551 (991) 0.6646 (849) 0.6744 (1162)

5.0 0.6240 (204) 0.6427 (224) 0.6496 (278) 0.6611 (281) 0.6670 (296) 0.6688 (240) 0.6707 (172) 0.6816 (385)
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FIG. S5. Top left corner panel depicts schematically the setup used to probe the mid-gap localized

modes. The red dots indicate the location of the probes. The other panels show the number of

modes located above but nearby the edge of the dielectric band (K-point), computed for different

T ∗. The normalized frequency is f = 1µm/λ, where λ is the wavelength in vacuum.
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FIG. S6. Spatial distribution of Hz of the modes listed in Table S1, computed in the transverse

plane crossing through the middle of the photonic slab.

them using a continuous-wave source whose frequency is equal to the frequency of the mode

under investigation. The field profiles of these modes are shown in Fig. S6, from which

one can see that at low T ∗, the modes become more localized when moving away from the

edge of the dielectric band (i.e., when their frequency f increases away from the frequency

corresponding to the K-symmetry point of the dielectric band). For example, compare the

field profiles of modes 8 and 1 at T ∗ = 0.2. As T ∗ increases, that is, when the strength of

7



disorder increases, the field profiles become more extended as the corresponding mean free

path increases, too. A more detailed discussion of localization properties of the Anderson

modes, based on physical quantities such as the Ioffe-Regel factor, localization length, and

mean free path, have been presented in the main text.

Supplementary Note 3. DESIGN OF WAVEGUIDES IN AMORPHOUS

STRUCTURES

Waveguides in amorphous photonic structures were constructed by removing a set of

holes, which defines the desired waveguide area and configuration. Due to the randomized

positions of holes in the amorphous crystal, generally, one would end up with small varia-

tions of the waveguide width along the waveguide. To avoid the optical losses due to wave

scattering induced by these random width variations, we added two rows of equally spaced

holes adjacently to both sides of the waveguide8, the distance between adjacent holes being

equal to the lattice constant, a, used in the design of the reference PhC. This method was

shown to greatly facilitate the design of arbitrarily-shaped waveguides embedded in uniform

random distributions of scatterers8.

It is well known that the width of a one-dimensional PhC optical waveguide plays a

key role in determining its frequency dispersion properties, especially when the waveguide

is operated in the subwavelength regime. Therefore, using numerical simulations based on

the finite-difference time-domain (FDTD) method, we performed a computational analysis

of the dependence of the spectral properties of straight waveguides based on amorphous

optical media on the waveguide width, the results of this investigation being summarized

in Fig. S7. In particular, we present in this figure the transmission spectra of three such

waveguides, with waveguide width, w, of 1.2
√

3a (831 nm), 1.3
√

3a (901 nm), and 1.4
√

3a

(970 nm)9. For each waveguide, the transmission spectra were determined for several values

of the propagation distance.

According to this analysis, for a propagation distance of 10.8µm, the waveguide with

w = 831 nm has a 3 dB bandwidth of 150 nm centered at 1483 nm, the waveguide with

w = 901 nm has a 3 dB bandwidth of 203 nm centered at 1525 nm, and the waveguide with

w = 970 nm has a 3 dB bandwidth of 130 nm centered at 1602 nm. As expected, a wider

waveguide has a passband located at larger wavelengths, namely closer to the edge of the

8



FIG. S7. (a), (b), (c) Transmission spectra of straight waveguides embedded in an amorphous

structure, determined for w = 831 nm, w = 901 nm, and w = 970 nm, respectively. The dashed

lines indicate the transmission spectra through a section of amorphous crystal, whereas the distance

from the excitation source is indicated in the legends.

dielectric band5. The extent of this passband is determined by the location of the band gap

of the amorphous crystal, which is indicated in Fig. S7 by the dashed lines. Varying the

waveguide width from 1.2
√

3a to 1.4
√

3a enables one to optimize the transmission properties

of the waveguide, namely to minimize its optical losses, by aligning the waveguide passband

with the band-gap of the embedding amorphous crystal.
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